Optimized Nearest-Neighbor Classifiers Using Generated Instances

  • We present a novel approach to classification, based on a tight coupling of instancebased learning and a genetic algorithm. In contrast to the usual instance-based learning setting, we do not rely on (parts of) the given training set as the basis of a nearestneighbor classifier, but we try to employ artificially generated instances as concept prototypes. The extremely hard problem of finding an appropriate set of concept prototypes is tackled by a genetic search procedure with the classification accuracy on the given training set as evaluation criterion for the genetic fitness measure. Experiments with artificial datasets show that - due to the ability to find concise and accurate concept descriptions that contain few, but typical instances - this classification approach is considerably robust against noise, untypical training instances and irrelevant attributes. These favorable (theoretical) properties are corroborated using a number of hard real-world classification problems.

Metadaten exportieren

  • Export nach Bibtex
  • Export nach RIS

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Verfasserangaben:Matthias Fuchs, Andreas Abecker
URN (Permalink):urn:nbn:de:hbz:386-kluedo-625
Schriftenreihe (Bandnummer):LSA Report (96,2E)
Sprache der Veröffentlichung:Englisch
Jahr der Fertigstellung:1996
Jahr der Veröffentlichung:1996
Veröffentlichende Institution:Technische Universität Kaiserslautern
Datum der Publikation (Server):03.04.2000
Freies Schlagwort / Tag:Genetic Algorithm ; Instance-based Learning; Nearest-Neighbor Classification
Fachbereiche / Organisatorische Einheiten:Fachbereich Informatik
DDC-Sachgruppen:0 Allgemeines, Informatik, Informationswissenschaft / 004 Informatik
Lizenz (Deutsch):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011

$Rev: 13581 $