Pointwise decay of solutions and of higher derivatives to Navier-Stokes equations

  • In this paper we study the space-time asymptotic behavior of the solutions and derivatives to th incompressible Navier-Stokes equations. Using moment estimates we obtain that strong solutions to the Navier-Stokes equations which decay in \(L^2\) at the rate of \(||u(t)||_2 \leq C(t+1)^{-\mu}\) will have the following pointwise space-time decay \[|D^{\alpha}u(x,t)| \leq C_{k,m} \frac{1}{(t+1)^{ \rho_o}(1+|x|^2)^{k/2}} \] where \( \rho_o = (1-2k/n)( m/2 + \mu) + 3/4(1-2k/n)\), and \(|a |= m\). The dimension n is \(2 \leq n \leq 5\) and \(0\leq k\leq n\) and \(\mu \geq n/4\)

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Cherif Amrouche, Vivette Girault, Maria Elena Schonbek, Thomas P. Schonbek
URN (permanent link):urn:nbn:de:hbz:386-kluedo-8014
Serie (Series number):Preprints (rote Reihe) des Fachbereich Mathematik (306)
Document Type:Preprint
Language of publication:English
Year of Completion:1998
Year of Publication:1998
Publishing Institute:Technische Universität Kaiserslautern
Faculties / Organisational entities:Fachbereich Mathematik
DDC-Cassification:510 Mathematik

$Rev: 12793 $