Asymptotic Expansions for Dirichlet Series Associated to Cusp Forms

  • We prove an asymptotic expansion of Riemann-Siegel type for Dirichlet series associated to cusp forms. Its derivation starts from a new integral formula for the Dirichlet series and uses sharp asymptotic expansions for partial sums of the Fourier series of the cusp form.

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

Share in Twitter Search Google Scholar
Author:Andreas Guthmann
URN (permanent link):urn:nbn:de:hbz:386-kluedo-7956
Serie (Series number):Preprints (rote Reihe) des Fachbereich Mathematik (300)
Document Type:Preprint
Language of publication:English
Year of Completion:1998
Year of Publication:1998
Publishing Institute:Technische Universität Kaiserslautern
Tag:Dirichlet series; Riemann-Siegel formula ; cusp forms
Faculties / Organisational entities:Fachbereich Mathematik
DDC-Cassification:510 Mathematik
MSC-Classification (mathematics):11M41 Other Dirichlet series and zeta functions (For local and global ground fields, see 11R42, 11R52, 11S40, 11S45; for algebro-geometric methods, see 14G10; see also 11E45, 11F66, 11F70, 11F72)

$Rev: 12793 $