Nonorthogonal Expansions on the Sphere

  • Discrete families of functions with the property that every function in a certain space can be represented by its formal Fourier series expansion are developed on the sphere. A Fourier series type expansion is obviously true if the family is an orthonormal basis of a Hilbert space, but it also can hold in situations where the family is not orthogonal and is overcomplete. Furthermore, all functions in our approach are axisymmetric (depending only on the spherical distance) so that they can be used adequately in (rotation) invariant pseudodifferential equations on the frames (ii) Gauss- Weierstrass frames, and (iii) frames consisting of locally supported kernel functions. Abel-Poisson frames form families of harmonic functions and provide us with powerful approximation tools in potential theory. Gauss-Weierstrass frames are intimately related to the diffusion equation on the sphere and play an important role in multiscale descriptions of image processing on the sphere. The third class enables us to discuss spherical Fourier expansions by means of axisymmetric finite elements.

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Verfasserangaben:Willi Freeden, Michael Schreiner
URN (Permalink):urn:nbn:de:hbz:386-kluedo-7048
Schriftenreihe (Bandnummer):Berichte der Arbeitsgruppe Technomathematik (AGTM Report) (97)
Sprache der Veröffentlichung:Englisch
Jahr der Fertigstellung:1993
Jahr der Veröffentlichung:1993
Veröffentlichende Institution:Technische Universität Kaiserslautern
Datum der Publikation (Server):03.04.2000
Fachbereiche / Organisatorische Einheiten:Fachbereich Mathematik
DDC-Sachgruppen:5 Naturwissenschaften und Mathematik / 510 Mathematik
Lizenz (Deutsch):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011