A Mathematical Model for Diffusion and Exchange Phenomena in Ultra Napkins

  • The performance of napkins is nowadays improved substantially by embedding granules of a superabsorbent into the cellulose matrix. In this paper a continuous model for the liquid transport in such an Ultra Napkin is proposed. Its mean feature is a nonlinear diffusion equation strongly coupled with an ODE describing a reversible absorbtion process. An efficient numerical method based on a symmetrical time splitting and a finite difference scheme of ADI-predictor-corrector type has been developed to solve these equations in a three dimensional setting. Numerical results are presented that can be used to optimize the granule distribution.

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Joachim Weickert
URN (permanent link):urn:nbn:de:hbz:386-kluedo-6788
Serie (Series number):Berichte der Arbeitsgruppe Technomathematik (AGTM Report) (72)
Document Type:Article
Language of publication:English
Year of Completion:1992
Year of Publication:1992
Publishing Institute:Technische Universität Kaiserslautern
Date of the Publication (Server):2000/10/17
Tag:mathematical modeling ; nonlinear diffusion ; operator splitting
Source:Math. Meth. Appl. Sci., Vol 16, 759 - 777, 1993
Faculties / Organisational entities:Fachbereich Mathematik
DDC-Cassification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
MSC-Classification (mathematics):35-XX PARTIAL DIFFERENTIAL EQUATIONS / 35Kxx Parabolic equations and systems [See also 35Bxx, 35Dxx, 35R30, 35R35, 58J35] / 35K57 Reaction-diffusion equations
Licence (German):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011

$Rev: 13581 $