A Singular-Perturbed Two-Phase Stefan Problem Due to Slow Diffusion

  • The asymptotic behaviour of a singular-perturbed two-phase Stefan problem due to slow diffusion in one of the two phases is investigated. In the limit the model equations reduce to a one-phase Stefan problem. A boundary layer at the moving interface makes it necessary to use a corrected interface condition obtained from matched asymptotic expansions. The approach is validated by numerical experiments using a front-tracking method.

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Jens Struckmeier, Andreas Unterreiter
URN (permanent link):urn:nbn:de:hbz:386-kluedo-6178
Serie (Series number):Berichte der Arbeitsgruppe Technomathematik (AGTM Report) (209)
Document Type:Preprint
Language of publication:English
Year of Completion:1999
Year of Publication:1999
Publishing Institute:Technische Universität Kaiserslautern
Faculties / Organisational entities:Fachbereich Mathematik
DDC-Cassification:510 Mathematik

$Rev: 12793 $