Berechnung des Schalldrucks im Innern eines Quaders

  • Die Aufgabe dieses Projektes ist die Untersuchung des Schallfeldes, das sich in einem geschlossenen Quader bei Erregung durch eine punktförmige Schallquelle einstellt. Eine zentrale Rolle spielt hierbei die Wechselwirkung zwischen dem Schallfeld und den Quaderplatten, die zu Schwingungen angeregt werden und so dem Schallfeld Energie entziehen. Der Zweck dieser Untersuchung ist, Erkenntnisse für die Berechnung des Innendrucks zu Fahrzeugkarosserien zu gewinnen. Dies muß bei der Dimensionierung des Quaders und bei der Wahl des Plattenmaterials berücksichtigt werden. Numerische Berechnungen des Schalldrucks in einem Quader wurden beispielsweise in [1] durchgeführt. Das Ergebnis zeigt, daß zwei Arten von Resonanzen auftreten: Zum einen Strukturresonanzen, die durch Eigenschwingungen der Wände hervorgerufen werden und die von den Wandabmessungen und dem Plattenmaterial abhängen, zum anderen Hohlraumresonanzen, die auftreten, wenn die Luftwellenlänge in einem geeigneten Verhältnis zu den Abmessungen des Hohlraums steht. Es ist sehr zweifelhaft, welche Rückschlüsse gezogen werden können von den numerischen Resultaten in [1] auf kompliziertere Geometrien, wie sie bei Fahrzeugkarosserien vorliegen. Eine tiefere Einsicht in die Kopplung zwischen Schallfeld und Plattenschwingungen vor allem in den Resonanzbereichen ist nur zu erwarten, wenn die Berechnung dieser Wechselwirkung weitgehend analytisch durchgeführt wird. Eine solche analytische Berechnung ist das Ziel dieses Projektes.

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:H. Babovsky
URN (permanent link):urn:nbn:de:hbz:386-kluedo-6072
Serie (Series number):Berichte der Arbeitsgruppe Technomathematik (AGTM Report) (20)
Document Type:Preprint
Language of publication:German
Year of Completion:1985
Year of Publication:1985
Publishing Institute:Technische Universität Kaiserslautern
Faculties / Organisational entities:Fachbereich Mathematik
DDC-Cassification:510 Mathematik

$Rev: 12793 $