UNIVERSITÄTSBIBLIOTHEK

Optisch induzierte Magnetisierungslandschaften zur Beeinflussung der Spinwellenpropagation

  • Gegenstand dieser Arbeit ist die optische Erzeugung von Magnetisierungsverteilungen und der Propagation von Spinwellen durch diese. Spinwellen sind kollektive Anregungen des Spinsystems eines magnetischen Materials - das zugehörige Quasiteilchen wird Magnon genannt. Diese Dissertation wurde im Rahmen von Projekt B04 des transregionalen Sonderforschungsbereiches SFB/TRR 173 "Spin+X - Spin in its collective environment" der Deutschen Forschungsgemeinschaft (DFG) durchgeführt. Das Forschungsprogramm befasst sich mit der Wechselwirkung von Elektronenspins mit deren Umgebung und umfasst neben der theoretischen und experimentellen Grundlagenforschung auch die Übertragung auf technische Anwendungen. In der vorliegenden Arbeit wird die Manipulation von Magnonenströmen in magnetischen Materialien diskutiert. Generell gibt es zwei Methoden zur Modifikation der Eigenschaften eines Materials: Entweder die chemische Zusammensetzung oder die Struktur der Probe wird verändert. Zur räumlichen Veränderung des Materials werden üblicherweise Lithografie-, Abscheidungs- und Ätzprozesse verwendet. Diese Verfahren legen die Eigenschaften des Materials irreversibel fest. In dieser Arbeit wird eine neue Methode zur transienten Modulation der Eigenschaften von magnetischen Materialien entwickelt und an verschiedenen Anwendungen demonstriert. Ein Laser in Kombination mit einem räumlichen Lichtmodulator, auf welchem Computer generierte Hologramme dargestellt werden, erlaubt die Erzeugung von fast beliebigen Intensitätsverteilungen auf einem dünnen magnetischen Film – Yttrium Eisen Granat mit wenigen µm Filmdicke. Das Laserlicht wird von der Probe absorbiert und erzeugt somit optisch induzierte thermische Profile. Daraus resultiert ebenfalls eine lokale Modifikation der Sättigungsmagnetisierung und somit entstehen Magnetisierungslandschaften. Durch zeitliche Modulation der Intensität des Lichts und Wärmeabgabe an die Umgebung, sind diese magnetischen Strukturen dynamisch und rekonfigurierbar. Solche Magnetisierungslandschaften werden in dieser Arbeit verwendet um die Propagation von Spinwellen in der Probe zu beeinflussen. So werden zum Beispiel auf einer einzigen Probe ein- und quasi-zweidimensionale magnonische Kristalle mit unterschiedlichen Gitterkonstanten realisiert. Ein vektorieller Netzwerkanalysator bestimmt das Transmissions- und Reflexionsspektrum. Die auftretenden Bandlücken lassen sich sowohl mit der Transfermatrixmethode beschreiben als auch mit der Dispersionsrelation von Spinwellen vergleichen. Die ermittelten experimentellen Ergebnisse entsprechen den Erwartungen. Eine weitere Anwendung der neu entwickelten Strukturierungsmethode ist die Konvertierung von unterschiedlichen Spinwellentypen. Die Propagation von Spinwellen in parallel zur Filmebene magnetisierten Proben ist streng anisotrop. Magnetostatische Rückwärts-Volumenmoden, die entlang der Magnetisierungsrichtung propagieren, und Oberflächenmoden, die sich senkrecht zu dieser Richtung ausbreiten, existieren üblicherweise nicht simultan bei einer gegebenen Frequenz und sonstigen äußeren Parametern. Durch Verwendung von optisch induzierten Magnetisierungsgradienten lässt sich sowohl experimentell als auch mittels Simulationen zeigen, dass eine Änderung der Propagationsrichtung um bis zu 90° – und somit eine Modenkonvertierung – möglich ist. Der dritte Anwendungsbereich von Magnetisierungslandschaften in dieser Arbeit ist die Spinwellen-Optik. Die räumliche Modulation der Sättigungsmagnetisierung verändert den lokalen Brechungsindex für Spinwellen. Analog zur konventionellen Optik mit Licht können somit Komponenten zur Beeinflussung der Spinwellenpropagation konstruiert werden. In Simulationen werden Spiegel zur Ablenkung von Spinwellenstrahlen, Axicons zur Erzeugung von Bessel-Strahlen und Gradientenindexlinsen zur Fokussierung von Spinwellen gezeigt. Außerdem können Gradientenindexlinsen dazu verwendet werden um Fourieroptik mit Spinwellen zu realisieren.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Marc Vogel
URN (permanent link):urn:nbn:de:hbz:386-kluedo-57281
Advisor:Georg von Freymann
Document Type:Doctoral Thesis
Language of publication:German
Publication Date:2019/09/03
Year of Publication:2019
Publishing Institute:Technische Universität Kaiserslautern
Granting Institute:Technische Universität Kaiserslautern
Acceptance Date of the Thesis:2019/07/02
Date of the Publication (Server):2019/09/03
Number of page:VI, 158
Faculties / Organisational entities:Fachbereich Physik
DDC-Cassification:5 Naturwissenschaften und Mathematik / 530 Physik
PACS-Classification (physics):70.00.00 CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES / 75.00.00 Magnetic properties and materials (for magnetic properties of quantum solids, see 67.80.dk; for magnetic properties related to treatment conditions, see 81.40.Rs; for magnetic properties of superconductors, see 74.25.Ha; for magnetic properties of rocks a
Licence (German):Creative Commons 4.0 - Namensnennung, nicht kommerziell, keine Bearbeitung (CC BY-NC-ND 4.0)