Spherical Wavelet Transform and its Discretization

  • A continuous version of spherical multiresolution is described, starting from continuous wavelet transform on the sphere. Scale discretization enables us to construct spherical counterparts to Daubechies wavelets and wavelet packets (known from Euclidean theory). Essential tool is the theory of singular integrals on the sphere. It is shown that singular integral operators forming a semigroup of contraction operators of class (Co) (like Abel-Poisson or Gauß-Weierstraß operators) lead in canonical way to (pyramidal) algorithms.

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

Share in Twitter Search Google Scholar
Author:Willi Freeden, U. Windheuser
URN (permanent link):urn:nbn:de:hbz:386-kluedo-5249
Serie (Series number):Berichte der Arbeitsgruppe Technomathematik (AGTM Report) (125)
Document Type:Preprint
Language of publication:English
Year of Completion:1996
Year of Publication:1996
Publishing Institute:Technische Universität Kaiserslautern
Source:Advances in Computational Mathematics, 5, 51-94 (1996)
Faculties / Organisational entities:Fachbereich Mathematik
DDC-Cassification:510 Mathematik

$Rev: 12793 $