UNIVERSITÄTSBIBLIOTHEK

Image Processing under Uncertainty

  • Novel image processing techniques have been in development for decades, but most of these techniques are barely used in real world applications. This results in a gap between image processing research and real-world applications; this thesis aims to close this gap. In an initial study, the quantification, propagation, and communication of uncertainty were determined to be key features in gaining acceptance for new image processing techniques in applications. This thesis presents a holistic approach based on a novel image processing pipeline, capable of quantifying, propagating, and communicating image uncertainty. This work provides an improved image data transformation paradigm, extending image data using a flexible, high-dimensional uncertainty model. Based on this, a completely redesigned image processing pipeline is presented. In this pipeline, each step respects and preserves the underlying image uncertainty, allowing image uncertainty quantification, image pre-processing, image segmentation, and geometry extraction. This is communicated by utilizing meaningful visualization methodologies throughout each computational step. The presented methods are examined qualitatively by comparing to the Stateof- the-Art, in addition to user evaluation in different domains. To show the applicability of the presented approach to real world scenarios, this thesis demonstrates domain-specific problems and the successful implementation of the presented techniques in these domains.

Volltext Dateien herunterladen

Metadaten exportieren

Metadaten
Verfasserangaben:Christina Gillmann
URN (Permalink):urn:nbn:de:hbz:386-kluedo-54707
Betreuer:Hans Hagen
Dokumentart:Dissertation
Sprache der Veröffentlichung:Englisch
Veröffentlichungsdatum (online):22.01.2019
Jahr der Veröffentlichung:2019
Veröffentlichende Institution:Technische Universität Kaiserslautern
Titel verleihende Institution:Technische Universität Kaiserslautern
Datum der Annahme der Abschlussarbeit:06.07.2018
Datum der Publikation (Server):23.01.2019
Freies Schlagwort / Tag:Image Processing; Uncertainty Visualization
Seitenzahl:XXII, 237
Fachbereiche / Organisatorische Einheiten:Fachbereich Informatik
DDC-Sachgruppen:0 Allgemeines, Informatik, Informationswissenschaft / 004 Informatik
Lizenz (Deutsch):Creative Commons 4.0 - Namensnennung, nicht kommerziell, keine Bearbeitung (CC BY-NC-ND 4.0)