UNIVERSITÄTSBIBLIOTHEK

Bootstrapping neural networks

  • Knowledge about the distribution of a statistical estimator is important for various purposes like, for example, the construction of confidence intervals for model parameters or the determiation of critical values of tests. A widely used method to estimate this distribution is the so-called bootstrap which is based on an imitation of the probabilistic structure of the data generating process on the basis of the information provided by a given set of random observations. In this paper we investigate this classical method in the context of artificial neural networks used for estimating a mapping from input to output space. We establish consistency results for bootstrap estimates of the distribution of parameter estimates.

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Jürgen Franke, Michael Neumann
URN (Permalink):urn:nbn:de:hbz:386-kluedo-4804
Schriftenreihe (Bandnummer):Report in Wirtschaftsmathematik (WIMA Report) (38)
Dokumentart:Preprint
Sprache der Veröffentlichung:Englisch
Jahr der Fertigstellung:1998
Jahr der Veröffentlichung:1998
Veröffentlichende Institution:Technische Universität Kaiserslautern
Datum der Publikation (Server):03.04.2000
Fachbereiche / Organisatorische Einheiten:Fachbereich Mathematik
DDC-Sachgruppen:5 Naturwissenschaften und Mathematik / 510 Mathematik
Lizenz (Deutsch):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011