UNIVERSITÄTSBIBLIOTHEK

On the expected number of shadow vertices of the convex hull of random points

  • Let \(a_1,\dots,a_m\) be independent random points in \(\mathbb{R}^n\) that are independent and identically distributed spherically symmetrical in \(\mathbb{R}^n\). Moreover, let \(X\) be the random polytope generated as the convex hull of \(a_1,\dots,a_m\) and let \(L_k\) be an arbitrary \(k\)-dimensional subspace of \(\mathbb{R}^n\) with \(2\le k\le n-1\). Let \(X_k\) be the orthogonal projection image of \(X\) in \(L_k\). We call those vertices of \(X\), whose projection images in \(L_k\) are vertices of \(X_k\)as well shadow vertices of \(X\) with respect to the subspace \(L_k\) . We derive a distribution independent sharp upper bound for the expected number of shadow vertices of \(X\) in \(L_k\).

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Karl-Heinz Küfer
URN (Permalink):urn:nbn:de:hbz:386-kluedo-50516
Schriftenreihe (Bandnummer):Preprints (rote Reihe) des Fachbereich Mathematik (282)
Dokumentart:Bericht
Sprache der Veröffentlichung:Englisch
Veröffentlichungsdatum (online):09.11.2017
Jahr der Veröffentlichung:1996
Veröffentlichende Institution:Technische Universität Kaiserslautern
Datum der Publikation (Server):09.11.2017
Seitenzahl:15
Fachbereiche / Organisatorische Einheiten:Fachbereich Mathematik
DDC-Sachgruppen:5 Naturwissenschaften und Mathematik / 510 Mathematik
Lizenz (Deutsch):Creative Commons 4.0 - Namensnennung, nicht kommerziell, keine Bearbeitung (CC BY-NC-ND 4.0)