Polyhedral Reconstruction of 3D Objects by Tetrahedra Removal

  • The problem of constructing a geometric model of an existing object from a set of boundary points arises in many areas of industry. In this paper we present a new solution to this problem which is an extension of Boissonnat's method [2]. Our approach uses the well known Delaunay triangulation of the data points as an intermediate step. Starting with this structure, we eliminate tetrahedra until we get an appropriate approximation of the desired shape. The method proposed in this paper is capable of reconstructing objects with arbitrary genus and can cope with different point densities in different regions of the object. The problems which arise during the elimination process, i.e. which tetrahedra can be eliminated, which order has to be used to control the process and finally, how to stop the elimination procedure at the right time, are discussed in detail. Several examples are given to show the validity of the method.

Metadaten exportieren

  • Export nach Bibtex
  • Export nach RIS

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Verfasserangaben:Frank Isselhard, Guido Brunnett, Thomas Schreiber
URN (Permalink):urn:nbn:de:hbz:386-kluedo-49569
Schriftenreihe (Bandnummer):Interner Bericht des Fachbereich Informatik (288)
Sprache der Veröffentlichung:Englisch
Veröffentlichungsdatum (online):26.10.2017
Jahr der Veröffentlichung:1997
Veröffentlichende Institution:Technische Universität Kaiserslautern
Datum der Publikation (Server):26.10.2017
Fachbereiche / Organisatorische Einheiten:Fachbereich Informatik
DDC-Sachgruppen:0 Allgemeines, Informatik, Informationswissenschaft / 004 Informatik
Lizenz (Deutsch):Creative Commons 4.0 - Namensnennung, nicht kommerziell, keine Bearbeitung (CC BY-NC-ND 4.0)

$Rev: 13581 $