UNIVERSITÄTSBIBLIOTHEK

A reduction algorithm for integer multiple objective linear programs

  • We consider a multiple objective linear program (MOLP) max{Cx|Ax = b,x in N_{0}^{n}} where C = (c_ij) is the p x n - matrix of p different objective functions z_i(x) = c_{i1}x_1 + ... + c_{in}x_n , i = 1,...,p and A is the m x n - matrix of a system of m linear equations a_{k1}x_1 + ... + a_{kn}x_n = b_k , k=1,...,m which form the set of constraints of the problem. All coefficients are assumed to be natural numbers or zero. The set M of admissable solutions {hat x} is an admissible solution such that there exists no other admissable solution x' with C{hat x} Cx'. The efficient solutions play the role of optimal solutions for the MOLP and it is our aim to determine the set of all efficient solutions

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Dietmar Schweigert, Peter Neumayer
URN (Permalink):urn:nbn:de:hbz:386-kluedo-4525
Schriftenreihe (Bandnummer):Report in Wirtschaftsmathematik (WIMA Report) (10)
Dokumentart:Preprint
Sprache der Veröffentlichung:Englisch
Jahr der Fertigstellung:1999
Jahr der Veröffentlichung:1999
Veröffentlichende Institution:Technische Universität Kaiserslautern
Datum der Publikation (Server):03.04.2000
Fachbereiche / Organisatorische Einheiten:Fachbereich Mathematik
DDC-Sachgruppen:5 Naturwissenschaften und Mathematik / 510 Mathematik
Lizenz (Deutsch):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011