A Unifying Logical Framework for Reason Maintenance

  • We present a way to describe Reason Maintenance Systems using the sameformalism for justification based as well as for assumption based approaches.This formalism uses labelled formulae and thus is a special case of Gabbay'slabelled deductive systems. Since our approach is logic based, we are able toget a semantics oriented description of the systems in question.Instead of restricting ourselves to e.g. propositional Horn formulae, as wasdone in the past, we admit arbitrary logics. This enables us to characterizesystems as a whole, including both the reason maintenance component and theproblem solver, nevertheless maintaining a separation between the basic logicand the part that describes the label propagation. The possibility to freely varythe basic logic enables us to not only describe various existing systems, but canhelp in the design of completely new ones.We also show, that it is possible to implement systems based directly on ourlabelled logic and plead for "incremental calculi" crafted to attack undecidablelogics.Furthermore it is shown that the same approach can be used to handledefault reasoning, if the propositional labels are upgraded to first order.

Volltext Dateien herunterladen

Metadaten exportieren

  • Export nach Bibtex
  • Export nach RIS

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Detlef Fehrer
URN (Permalink):urn:nbn:de:hbz:386-kluedo-3612
Schriftenreihe (Bandnummer):SEKI Report (96,4)
Dokumentart:Preprint
Sprache der Veröffentlichung:Englisch
Jahr der Fertigstellung:1999
Jahr der Veröffentlichung:1999
Veröffentlichende Institution:Technische Universität Kaiserslautern
Datum der Publikation (Server):03.04.2000
Fachbereiche / Organisatorische Einheiten:Fachbereich Informatik
DDC-Sachgruppen:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Lizenz (Deutsch):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011

$Rev: 13581 $