Multi-Modal Activity Recognition Systems with Minimal Training Data and Unobtrusive Environmental Instrumentations

  • The recognition of day-to-day activities is still a very challenging and important research topic. During recent years, a lot of research has gone into designing and realizing smart environ- ments in different application areas such as health care, maintenance, sports or smart homes. As a result, a large amount of sensor modalities were developed, different types of activity and context recognition services were implemented and the resulting systems were benchmarked using state-of-the-art evaluation techniques. However, so far hardly any of these approaches have found their way into the market and consequently into the homes of real end-users on a large scale. The reason for this is, that almost all systems have one or more of the following characteristics in common: expensive high-end or prototype sensors are used which are not af- fordable or reliable enough for mainstream applications; many systems are deployed in highly instrumented environments or so-called "living labs", which are far from real-life scenarios and are often evaluated only in research labs; almost all systems are based on complex system con- figurations and/or extensive training data sets, which means that a large amount of data must be collected in order to install the system. Furthermore, many systems rely on a user and/or environment dependent training, which makes it even more difficult to install them on a large scale. Besides, a standardized integration procedure for the deployment of services in existing environments and smart homes has still not been defined. As a matter of fact, service providers use their own closed systems, which are not compatible with other systems, services or sensors. It is clear, that these points make it nearly impossible to deploy activity recognition systems in a real daily-life environment, to make them affordable for real users and to deploy them in hundreds or thousands of different homes. This thesis works towards the solution of the above mentioned problems. Activity and context recognition systems designed for large-scale deployment and real-life scenarios are intro- duced. Systems are based on low-cost, reliable sensors and can be set up, configured and trained with little effort, even by technical laymen. It is because of these characteristics that we call our approach "minimally invasive". As a consequence, large amounts of training data, that are usu- ally required by many state-of-the-art approaches, are not necessary. Furthermore, all systems were integrated unobtrusively in real-world/similar to real-world environments and were evalu- ated under real-life, as well as similar to real-life conditions. The thesis addresses the following topics: First, a sub-room level indoor positioning system is introduced. The system is based on low-cost ceiling cameras and a simple computer vision tracking approach. The problem of user identification is solved by correlating modes of locomotion patterns derived from the trajectory of unidentified objects and on-body motion sensors. Afterwards, the issue of recognizing how and what mainstream household devices have been used for is considered. Based on a low-cost microphone, the water consumption of water-taps can be approximated by analyzing plumbing noise. Besides that, operating modes of mainstream electronic devices were recognized by using rule-based classifiers, electric current features and power measurement sensors. As a next step, the difficulty of spotting subtle, barely distinguishable hand activities and the resulting object interactions, within a data set containing a large amount of background data, is addressed. The problem is solved by introducing an on-body core system which is configured by simple, one-time physical measurements and minimal data collections. The lack of large training sets is compensated by fusing the system with activity and context recognition systems, that are able to reduce the search space observed. Amongst other systems, previously introduced approaches and ideas are revisited in this section. An in-depth evaluation shows the impact of each fusion procedure on the performance and run-time of the system. The approaches introduced are able to provide significantly better results than a state-of-the-art inertial system using large amounts of training data. The idea of using unobtrusive sensors has also been applied to the field of behavior analysis. Integrated smartphone sensors are used to detect behavioral changes of in- dividuals due to medium-term stress periods. Behavioral parameters related to location traces, social interactions and phone usage were analyzed to detect significant behavioral changes of individuals during stressless and stressful time periods. Finally, as a closing part of the the- sis, a standardization approach related to the integration of ambient intelligence systems (as introduced in this thesis) in real-life and large-scale scenarios is shown.

Download full text files

Export metadata

Author:Gerald Bauer
URN (permanent link):urn:nbn:de:hbz:386-kluedo-37802
Advisor:Paul Lukowicz
Document Type:Doctoral Thesis
Language of publication:English
Publication Date:2014/04/14
Year of Publication:2014
Publishing Institute:Technische Universität Kaiserslautern
Granting Institute:Technische Universität Kaiserslautern
Acceptance Date of the Thesis:2013/12/19
Date of the Publication (Server):2014/04/15
Tag:Activity recognition; Minimal training; Unobtrusive instrumentations; Wearable computing
Number of page:XII, 289
Faculties / Organisational entities:Fachbereich Informatik
DDC-Cassification:0 Allgemeines, Informatik, Informationswissenschaft / 004 Informatik
Licence (German):Standard gemäß KLUEDO-Leitlinien vom 10.09.2012