An Application of Klop's Counterexample to a Higher-Order Rewrite System

  • In 1978, Klop demonstrated that a rewrite system constructed by adding the untyped lambda calculus, which has the Church-Rosser property, to a Church-Rosser first-order algebraic rewrite system may not be Church-Rosser. In contrast, Breazu-Tannen recently showed that argumenting any Church-Rosser first-order algebraic rewrite system with the simply-typed lambda calculus results in a Church-Rosser rewrite system. In addition, Breazu-Tannen and Gallier have shown that the second-order polymorphic lambda calculus can be added to such rewrite systems without compromising the Church-Rosser property (for terms which can be provably typed). There are other systems for which a Church-Rosser result would be desirable, among them being X^t+SP+FIX, the simply-typed lambda calculus extended with surjective pairing and fixed points. This paper will show that Klop's untyped counterexample can be lifted to a typed system to demonstrate that X^t+SP+FIX is not Church-Rosser.

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Dan Nesmith
URN (permanent link):urn:nbn:de:hbz:386-kluedo-3367
Serie (Series number):SEKI Report (94,6)
Document Type:Preprint
Language of publication:English
Year of Completion:1999
Year of Publication:1999
Publishing Institute:Technische Universität Kaiserslautern
Faculties / Organisational entities:Fachbereich Informatik
DDC-Cassification:004 Datenverarbeitung; Informatik

$Rev: 12793 $