The application of goal-oriented heuristics for prooving equational theorems via the unfailing Knuth-Bendix completion procedure A case study: lattice ordered groups

  • In this report we present a case study of employing goal-oriented heuristics whenproving equational theorems with the (unfailing) Knut-Bendix completion proce-dure. The theorems are taken from the domain of lattice ordered groups. It will bedemonstrated that goal-oriented (heuristic) criteria for selecting the next critical paircan in many cases significantly reduce the search effort and hence increase per-formance of the proving system considerably. The heuristic, goalADoriented criteriaare on the one hand based on so-called "measures" measuring occurrences andnesting of function symbols, and on the other hand based on matching subterms.We also deal with the property of goal-oriented heuristics to be particularly helpfulin certain stages of a proof. This fact can be addressed by using them in a frame-work for distributed (equational) theorem proving, namely the "teamwork-method".

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Matthias Fuchs
URN (permanent link):urn:nbn:de:hbz:386-kluedo-3324
Serie (Series number):SEKI Report (94,2)
Document Type:Preprint
Language of publication:English
Year of Completion:1999
Year of Publication:1999
Publishing Institute:Technische Universität Kaiserslautern
Faculties / Organisational entities:Fachbereich Informatik
DDC-Cassification:004 Datenverarbeitung; Informatik

$Rev: 12793 $