Linearized Riesz Transform and Quasi-Monogenic Shearlets

  • The only quadrature operator of order two on \(L_2 (\mathbb{R}^2)\) which covaries with orthogonal transforms, in particular rotations is (up to the sign) the Riesz transform. This property was used for the construction of monogenic wavelets and curvelets. Recently, shearlets were applied for various signal processing tasks. Unfortunately, the Riesz transform does not correspond with the shear operation. In this paper we propose a novel quadrature operator called linearized Riesz transform which is related to the shear operator. We prove properties of this transform and analyze its performance versus the usual Riesz transform numerically. Furthermore, we demonstrate the relation between the corresponding optical filters. Based on the linearized Riesz transform we introduce finite discrete quasi-monogenic shearlets and prove that they form a tight frame. Numerical experiments show the good fit of the directional information given by the shearlets and the orientation ob- tained from the quasi-monogenic shearlet coefficients. Finally we provide experiments on the directional analysis of textures using our quasi-monogenic shearlets.

Volltext Dateien herunterladen

Metadaten exportieren

  • Export nach Bibtex
  • Export nach RIS

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Sören Häuser, Bettina Heise, Gabriele Steidl
URN (Permalink):urn:nbn:de:hbz:386-kluedo-35961
Dokumentart:Preprint
Sprache der Veröffentlichung:Englisch
Veröffentlichungsdatum (online):21.08.2013
Jahr der Veröffentlichung:2013
Veröffentlichende Institution:Technische Universität Kaiserslautern
Datum der Publikation (Server):22.08.2013
Freies Schlagwort / Tag:Riesz Transform; Shearlets; instantaneous phase; local orientation; monogenic signals
Seitenzahl:23
Fachbereiche / Organisatorische Einheiten:Fachbereich Mathematik
DDC-Sachgruppen:5 Naturwissenschaften und Mathematik / 510 Mathematik
MSC-Klassifikation (Mathematik):65-XX NUMERICAL ANALYSIS / 65Txx Numerical methods in Fourier analysis / 65T99 None of the above, but in this section
Lizenz (Deutsch):Standard gemäß KLUEDO-Leitlinien vom 10.09.2012

$Rev: 13581 $