UNIVERSITÄTSBIBLIOTHEK

On Gröbner Bases in Monoid and Group Rings

  • Following Buchberger's approach to computing a Gröbner basis of a poly-nomial ideal in polynomial rings, a completion procedure for finitely generatedright ideals in Z[H] is given, where H is an ordered monoid presented by a finite,convergent semi - Thue system (Sigma; T ). Taking a finite set F ' Z[H] we get a(possibly infinite) basis of the right ideal generated by F , such that using thisbasis we have unique normal forms for all p 2 Z[H] (especially the normal formis 0 in case p is an element of the right ideal generated by F ). As the orderingand multiplication on H need not be compatible, reduction has to be definedcarefully in order to make it Noetherian. Further we no longer have p Delta x ! p 0for p 2 Z[H]; x 2 H. Similar to Buchberger's s - polynomials, confluence criteriaare developed and a completion procedure is given. In case T = ; or (Sigma; T ) is aconvergent, 2 - monadic presentation of a group providing inverses of length 1 forthe generators or (Sigma; T ) is a convergent presentation of a commutative monoid ,termination can be shown. So in this cases finitely generated right ideals admitfinite Gröbner bases. The connection to the subgroup problem is discussed.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Klaus Madlener, Birgit Reinert
URN (permanent link):urn:nbn:de:hbz:386-kluedo-3196
Serie (Series number):SEKI Report (93,8)
Document Type:Preprint
Language of publication:English
Year of Completion:1999
Year of Publication:1999
Publishing Institute:Technische Universität Kaiserslautern
Date of the Publication (Server):2000/04/03
Faculties / Organisational entities:Fachbereich Informatik
DDC-Cassification:0 Allgemeines, Informatik, Informationswissenschaft / 004 Informatik
Licence (German):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011