On Gröbner Bases in Monoid and Group Rings

  • Following Buchberger's approach to computing a Gröbner basis of a poly-nomial ideal in polynomial rings, a completion procedure for finitely generatedright ideals in Z[H] is given, where H is an ordered monoid presented by a finite,convergent semi - Thue system (Sigma; T ). Taking a finite set F ' Z[H] we get a(possibly infinite) basis of the right ideal generated by F , such that using thisbasis we have unique normal forms for all p 2 Z[H] (especially the normal formis 0 in case p is an element of the right ideal generated by F ). As the orderingand multiplication on H need not be compatible, reduction has to be definedcarefully in order to make it Noetherian. Further we no longer have p Delta x ! p 0for p 2 Z[H]; x 2 H. Similar to Buchberger's s - polynomials, confluence criteriaare developed and a completion procedure is given. In case T = ; or (Sigma; T ) is aconvergent, 2 - monadic presentation of a group providing inverses of length 1 forthe generators or (Sigma; T ) is a convergent presentation of a commutative monoid ,termination can be shown. So in this cases finitely generated right ideals admitfinite Gröbner bases. The connection to the subgroup problem is discussed.

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Klaus Madlener, Birgit Reinert
URN (permanent link):urn:nbn:de:hbz:386-kluedo-3196
Serie (Series number):SEKI Report (93,8)
Document Type:Preprint
Language of publication:English
Year of Completion:1999
Year of Publication:1999
Publishing Institute:Technische Universität Kaiserslautern
Faculties / Organisational entities:Fachbereich Informatik
DDC-Cassification:004 Datenverarbeitung; Informatik

$Rev: 12793 $