Visual Support for Safety Analysis

  • The safety of embedded systems is becoming more and more important nowadays. Fault Tree Analysis (FTA) is a widely used technique for analyzing the safety of embedded systems. A standardized tree-like structure called a Fault Tree (FT) models the failures of the systems. The Component Fault Tree (CFT) provides an advanced modeling concept for adapting the traditional FTs to the hierarchical architecture model in system design. Minimal Cut Set (MCS) analysis is a method that works for qualitative analysis based on the FTs. Each MCS represents a minimal combination of component failures of a system called basic events, which may together cause the top-level system failure. The ordinary representations of MCSs consist of plain text and data tables with little additional supporting visual and interactive information. Importance analysis based on FTs or CFTs estimates the contribution of each potential basic event to a top-level system failure. The resulting importance values of basic events are typically represented in summary views, e.g., data tables and histograms. There is little visual integration between these forms and the FT (or CFT) structure. The safety of a system can be improved using an iterative process, called the safety improvement process, based on FTs taking relevant constraints into account, e.g., cost. Typically, relevant data regarding the safety improvement process are presented across multiple views with few interactive associations. In short, the ordinary representation concepts cannot effectively facilitate these analyses. We propose a set of visualization approaches for addressing the issues above mentioned in order to facilitate those analyses in terms of the representations. Contribution: 1. To support the MCS analysis, we propose a matrix-based visualization that allows detailed data of the MCSs of interest to be viewed while maintaining a satisfactory overview of a large number of MCSs for effective navigation and pattern analysis. Engineers can also intuitively analyze the influence of MCSs of a CFT. 2. To facilitate the importance analysis based on the CFT, we propose a hybrid visualization approach that combines the icicle-layout-style architectural views with the CFT structure. This approach facilitates to identify the vulnerable components taking the hierarchies of system architecture into account and investigate the logical failure propagation of the important basic events. 3. We propose a visual safety improvement process that integrates an enhanced decision tree with a scatter plot. This approach allows one to visually investigate the detailed data related to individual steps of the process while maintaining the overview of the process. The approach facilitates to construct and analyze improvement solutions of the safety of a system. Using our visualization approaches, the MCS analysis, the importance analysis, and the safety improvement process based on the CFT can be facilitated.

Volltext Dateien herunterladen

Metadaten exportieren

  • Export nach Bibtex
  • Export nach RIS

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Yi Yang
URN (Permalink):urn:nbn:de:hbz:386-kluedo-33442
Betreuer:Peter Liggesmeyer, Hans Hagen
Dokumentart:Dissertation
Sprache der Veröffentlichung:Englisch
Veröffentlichungsdatum (online):29.10.2012
Jahr der Veröffentlichung:2012
Veröffentlichende Institution:Technische Universität Kaiserslautern
Titel verleihende Institution:Technische Universität Kaiserslautern
Datum der Annahme der Abschlussarbeit:25.10.2012
Datum der Publikation (Server):30.10.2012
Freies Schlagwort / Tag:Fault Tree Analysis; Information Visualization; Safety Analysis
Seitenzahl:iii, 197, 17
Fachbereiche / Organisatorische Einheiten:Fachbereich Informatik
DDC-Sachgruppen:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Lizenz (Deutsch):Standard gemäß KLUEDO-Leitlinien vom 10.09.2012

$Rev: 13581 $