Multibody dynamics simulation of geometrically exact Cosserat rods

  • In this paper, we present a viscoelastic rod model that is suitable for fast and accurate dynamic simulations. It is based on Cosserat’s geometrically exact theory of rods and is able to represent extension, shearing (‘stiff’ dof), bending and torsion (‘soft’ dof). For inner dissipation, a consistent damping potential proposed by Antman is chosen. We parametrise the rotational dof by unit quaternions and directly use the quaternionic evolution differential equation for the discretisation of the Cosserat rod curvature. The discrete version of our rod model is obtained via a finite difference discretisation on a staggered grid. After an index reduction from three to zero, the right-hand side function f and the Jacobian \(\partial f/\partial(q, v, t)\) of the dynamical system \(\dot{q} = v, \dot{v} = f(q, v, t)\) is free of higher algebraic (e. g. root) or transcendental (e. g. trigonometric or exponential) functions and therefore cheap to evaluate. A comparison with Abaqus finite element results demonstrates the correct mechanical behavior of our discrete rod model. For the time integration of the system, we use well established stiff solvers like RADAU5 or DASPK. As our model yields computational times within milliseconds, it is suitable for interactive applications in ‘virtual reality’ as well as for multibody dynamics simulation.

Volltext Dateien herunterladen

Metadaten exportieren

  • Export nach Bibtex
  • Export nach RIS

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Holger Lang, Joachim Linn, Martin Arnold
URN (Permalink):urn:nbn:de:hbz:386-kluedo-29855
Schriftenreihe (Bandnummer):Berichte des Fraunhofer-Instituts für Techno- und Wirtschaftsmathematik (ITWM Report) (209)
Dokumentart:Bericht
Sprache der Veröffentlichung:Englisch
Veröffentlichungsdatum (online):18.04.2012
Jahr der Veröffentlichung:2011
Veröffentlichende Institution:Fraunhofer-Institut für Techno- und Wirtschaftsmathematik
Datum der Publikation (Server):19.04.2012
Seitenzahl:41
Fachbereiche / Organisatorische Einheiten:Fraunhofer (ITWM)
DDC-Sachgruppen:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Lizenz (Deutsch):Standard gemäß KLUEDO-Leitlinien vom 15.02.2012

$Rev: 13581 $