Development of New Methods for the Synthesis of Aldehydes, Arenes and Trifluoromethylated Compounds

  • In the 1st project, successful development of 2nd generation of a palladium catalyst for the selective hydrogenation of carboxylic acids to aldehydes was accomplished. This project was done in cooperation with Dipl. Chem. Thomas Fett from Boeringer Ingelheim, Austria. The new catalyst is highly effective for the conversion of diversely functionalized aromatic, heteroaromatic and aliphatic carboxylic acids to the corresponding aldehydes in the presence of pivalic anhydride at 5 bar hydrogen pressure, which was otherwise achieved either at 30 bar of hydrogen pressure or by using waste intensive hypophosphite bases as reducing agent. Our method has increased the synthetic importance of this valuable transformation. Selective hydrogenation of carboxylic acids to the corresponding aldehydes is now possible with industrial hydrogenation equipment as well as laboratory scale glass autoclaves. It might also convince the synthetic organic chemists to use this transformation for routine aldehyde synthesis in the laboratories. In the 2nd project, a microwave assisted Cu-catalyzed protodecarboxylation of arenecarboxylic acids to arenes is achieved. This work was done in collaboration with Dipl. Chem. Filipe Manjolinho under the supervision of Dr. Nuria Rodríguez. In the presence of 1-5 mol% of inexpensive CuI/1,10-phenanthroline catalyst generated in situ under microwave radiations, diversely functionalized arenes and heteroarene carboxylic acids have been decarboxylated to the corresponding arenes in good yields at 190 °C in 5-15 min. The loss of volatile arenes with the release of CO2 is controled by the use of sealed high pressure resistant microwave vessels. These reactions are highly beneficial for parallel synthesis in drug discovery due to their short reaction time. Microwave technology will also help in the future to develop more effective catalysts for protodecarboxylation rections. Based on the microwave assisted protodecarboxylation strategy, decarboxylative coupling of arenecarboxylic acids with aryl triflates and tosylates was also conducted under microwave radiation which provided higher yields of the corresponding biphenyls from deactivated substrates in short reaction time compared to the conventional heating. In the 3rd project, crystalline, potassium (trifluoromethyl)trimethoxyborate was successfully applied for the synthesis of benzotrifluorides under the oxidative conditions. This project was done in cooperation with Dipl. Chem. Annette Buba. In the presence of Cu(OAc)2 and molecular oxygen, arylboronates were coupled with K+[CF3B(OMe)3] in DMSO at 60 °C. A variety of benzotriflurides was synthesized in good yields under the optimized reaction conditions. This protocol for the oxidative trifluoromethylation of arylboronates is the base for the development of decarboxylative trifluoromethylation reaction of arenecarboxylic acids. The 4th project discloses the simple and straightforward synthesis of trifluoromethylated alcohols by nucleophilic addition of potassium (trifluoromethyl)trimethoxyborate to carbonyl compounds. This project was done in cooperation with Dr. Thomas Knauber and Dipl. Chem. Annette Buba. In the presence of K+[CF3B(OMe)3] in THF at 60 °C, diversely functionalized aldehydes and ketones were successfully converted into the corresponding trifluoromethylated alcohols. The 3rd and 4th projects demonstrate the successful establishment of crystalline and shelf stable potassium (trifluoromethyl)trimethoxyborate as highly versatile CF3-source in nucleophilic trifluoromethylation reactions. These new protocols are characterized by their user-friendliness and broad applicability under mild reaction conditions, thus they are beneficial for late stage introduction of CF3-group into organic molecules.

Download full text files

Export metadata

Author:Bilal Khan
URN (permanent link):urn:nbn:de:hbz:386-kluedo-29671
Advisor:Lukas Gooßen
Document Type:Doctoral Thesis
Language of publication:English
Publication Date:2012/02/04
Year of Publication:2012
Publishing Institute:Technische Universität Kaiserslautern
Granting Institute:Technische Universität Kaiserslautern
Acceptance Date of the Thesis:2012/03/30
Date of the Publication (Server):2012/04/03
Number of page:158
Faculties / Organisational entities:Fachbereich Chemie
DDC-Cassification:5 Naturwissenschaften und Mathematik / 540 Chemie
Licence (German):Standard gemäß KLUEDO-Leitlinien vom 15.02.2012