On Gyroscopic Stabilization

  • This thesis deals with systems of the form \( M\ddot x+D\dot x+Kx=0\;, \; x \in \mathbb R^n\;, \) with a positive definite mass matrix \(M\), a symmetric damping matrix \(D\) and a positive definite stiffness matrix \(K\). If the equilibrium in the system is unstable, a small disturbance is enough to set the system in motion again. The motion of the system sustains itself, an effect which is called self-excitation or self-induced vibration. The reason behind this effect is the presence of negative damping, which results for example from dry friction. Negative damping implies that the damping matrix \(D\) is indefinite or negative definite. Throughout our work, we assume \(D\) to be indefinite, and that the system possesses both stable and unstable modes and thus is unstable. It is now the idea of gyroscopic stabilization to mix the modes of a system with indefinite damping such that the system is stabilized without introducing further dissipation. This is done by adding gyroscopic forces \(G\dot x\) with a suitable skew-symmetric matrix \(G\) to the left-hand side. We call \(G=-G^T\in\mathbb R^{n\times n}\) a gyroscopic stabilizer for the unstable system, if \( M\ddot x+(D+ G)\dot x+Kx=0 \) is asymptotically stable. We show the existence of \(G\) in space dimensions three and four.

Volltext Dateien herunterladen

Metadaten exportieren

  • Export nach Bibtex
  • Export nach RIS

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Jan Homeyer
URN (Permalink):urn:nbn:de:hbz:386-kluedo-29467
Betreuer:Tobias Damm
Dokumentart:Dissertation
Sprache der Veröffentlichung:Englisch
Veröffentlichungsdatum (online):20.03.2012
Jahr der Veröffentlichung:2012
Veröffentlichende Institution:Technische Universität Kaiserslautern
Titel verleihende Institution:Technische Universität Kaiserslautern
Datum der Annahme der Abschlussarbeit:16.02.2012
Datum der Publikation (Server):20.03.2012
Freies Schlagwort / Tag:Gyroscopic
Seitenzahl:77
Fachbereiche / Organisatorische Einheiten:Fachbereich Mathematik
DDC-Sachgruppen:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
MSC-Klassifikation (Mathematik):15-XX LINEAR AND MULTILINEAR ALGEBRA; MATRIX THEORY
Lizenz (Deutsch):Standard gemäß KLUEDO-Leitlinien vom 15.02.2012

$Rev: 13581 $