On the Translation of Higher-Order Problems into First-Order Logic

  • In most cases higher-order logic is based on the (gamma)-calculus in order to avoid the infinite set of so-called comprehension axioms. However, there is a price to be paid, namelyan undecidable unification algorithm. If we do not use the(gamma) - calculus, but translate higher-order expressions intofirst-order expressions by standard translation techniques, we haveto translate the infinite set of comprehension axioms, too. Ofcourse, in general this is not practicable. Therefore such anapproach requires some restrictions such as the choice of thenecessary axioms by a human user or the restriction to certainproblem classes. This paper will show how the infinite class ofcomprehension axioms can be represented by a finite subclass,so that an automatic translation of finite higher-order prob-lems into finite first-order problems is possible. This trans-lation is sound and complete with respect to a Henkin-stylegeneral model semantics.

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Manfred Kerber
URN (permanent link):urn:nbn:de:hbz:386-kluedo-2501
Document Type:Article
Language of publication:English
Year of Completion:1999
Year of Publication:1999
Publishing Institute:Technische Universität Kaiserslautern
Faculties / Organisational entities:Fachbereich Informatik
DDC-Cassification:004 Datenverarbeitung; Informatik

$Rev: 12793 $