On Cyclic Gradient Descent Reprojection

  • In recent years, convex optimization methods were successfully applied for various image processing tasks and a large number of first-order methods were designed to minimize the corresponding functionals. Interestingly, it was shown recently by Grewenig et al. that the simple idea of so-called “superstep cycles” leads to very efficient schemes for time-dependent (parabolic) image enhancement problems as well as for steady state (elliptic) image compression tasks. The ”superstep cycles” approach is similar to the nonstationary (cyclic) Richardson method which has been around for over sixty years. In this paper, we investigate the incorporation of superstep cycles into the gradient descent reprojection method. We show for two problems in compressive sensing and image processing, namely the LASSO approach and the Rudin-Osher-Fatemi model that the resulting simple cyclic gradient descent reprojection algorithm can numerically compare with various state-of-the-art first-order algorithms. However, due to the nonlinear projection within the algorithm convergence proofs even under restrictive assumptions on the linear operators appear to be hard. We demonstrate the difficulties by studying the simplest case of a two-cycle algorithm in R^2 with projections onto the Euclidian ball.

Volltext Dateien herunterladen

Metadaten exportieren

  • Export nach Bibtex
  • Export nach RIS

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Simon Setzer, Gabriele Steidl, Jan Morgenthaler
URN (Permalink):urn:nbn:de:hbz:386-kluedo-27423
Dokumentart:Preprint
Sprache der Veröffentlichung:Englisch
Veröffentlichungsdatum (online):19.09.2011
Jahr der Veröffentlichung:2011
Veröffentlichende Institution:Technische Universität Kaiserslautern
Datum der Publikation (Server):19.09.2011
Freies Schlagwort / Tag:convex optimization; gradient descent reprojection; superstep cycles
Fachbereiche / Organisatorische Einheiten:Fachbereich Mathematik
DDC-Sachgruppen:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Sammlungen:Schriften der AG Mathematische Bildverbarbeitung und Datenanalyse
Lizenz (Deutsch):Standard gemäß KLUEDO-Leitlinien vom 27.05.2011

$Rev: 13581 $