Asymptotic order of the parallel volume difference

  • In this paper we continue the investigation of the asymptotic behavior of the parallel volume in Minkowski spaces as the distance tends to infinity that was started in [13]. We will show that the difference of the parallel volume of the convex hull of a body and the parallel volume of the body itself can at most have order \(r^{d-2}\) in dimension \(d\). Then we will show that in the Euclidean case this difference can at most have order \(r^{d-3}\). We will also examine the asymptotic behavior of the derivative of this difference as the distance tends to infinity. After this we will compute the derivative of \(f_\mu (rK)\) in \(r\), where \(f_\mu\) is the Wills functional or a similar functional, \(K\) is a fixed body and \(rK\) is the Minkowski-product of \(r\) and \(K\). Finally we will use these results to examine Brownian paths and Boolean models and derive new proofs for formulae for intrinsic volumes.

Volltext Dateien herunterladen

Metadaten exportieren

  • Export nach Bibtex
  • Export nach RIS

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Jürgen Kampf
URN (Permalink):urn:nbn:de:hbz:386-kluedo-17006
Schriftenreihe (Bandnummer):Report in Wirtschaftsmathematik (WIMA Report) (139)
Dokumentart:Preprint
Sprache der Veröffentlichung:Englisch
Jahr der Fertigstellung:2011
Jahr der Veröffentlichung:2011
Veröffentlichende Institution:Technische Universität Kaiserslautern
Datum der Publikation (Server):26.05.2011
Freies Schlagwort / Tag:Parallel volume ; Wills functional; non-convex body
Bemerkung:
A newer version of this document is available on KLUEDO: urn:nbn:de:hbz:386-kluedo-29122
Fachbereiche / Organisatorische Einheiten:Fachbereich Mathematik
DDC-Sachgruppen:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Lizenz (Deutsch):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011

$Rev: 13581 $