A uniform central limit theorem for neural network based autoregressive processes with applications to change-point analysis

  • We consider an autoregressive process with a nonlinear regression function that is modeled by a feedforward neural network. We derive a uniform central limit theorem which is useful in the context of change-point analysis. We propose a test for a change in the autoregression function which - by the uniform central limit theorem - has asymptotic power one for a large class of alternatives including local alternatives.

Volltext Dateien herunterladen

Metadaten exportieren

  • Export nach Bibtex
  • Export nach RIS

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Claudia Kirch, Joseph Tadjuidje Kamgaing
URN (Permalink):urn:nbn:de:hbz:386-kluedo-16921
Schriftenreihe (Bandnummer):Report in Wirtschaftsmathematik (WIMA Report) (138)
Dokumentart:Preprint
Sprache der Veröffentlichung:Englisch
Jahr der Fertigstellung:2011
Jahr der Veröffentlichung:2011
Veröffentlichende Institution:Technische Universität Kaiserslautern
Datum der Publikation (Server):25.03.2011
Freies Schlagwort / Tag:autoregressive process; neural network ; nonparametric regression ; uniform central limit theorem
Fachbereiche / Organisatorische Einheiten:Fachbereich Mathematik
DDC-Sachgruppen:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
MSC-Klassifikation (Mathematik):60-XX PROBABILITY THEORY AND STOCHASTIC PROCESSES (For additional applications, see 11Kxx, 62-XX, 90-XX, 91-XX, 92-XX, 93-XX, 94-XX) / 60Fxx Limit theorems [See also 28Dxx, 60B12] / 60F05 Central limit and other weak theorems
62-XX STATISTICS / 62Jxx Linear inference, regression / 62J02 General nonlinear regression
62-XX STATISTICS / 62Mxx Inference from stochastic processes / 62M45 Neural nets and related approaches
Lizenz (Deutsch):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011

$Rev: 13581 $