Adaptive Extraction and Representation of Geometric Structures from Unorganized 3D Point Sets

Adaptive Extraktion und Darstellung von Geometrischen Strukturen aus Unorganisierten 3D Punktdaten

  • The primary emphasis of this thesis concerns the extraction and representation of intrinsic properties of three-dimensional (3D) unorganized point clouds. The points establishing a point cloud as it mainly emerges from LiDaR (Light Detection and Ranging) scan devices or by reconstruction from two-dimensional (2D) image series represent discrete samples of real world objects. Depending on the type of scenery the data is generated from the resulting point cloud may exhibit a variety of different structures. Especially, in the case of environmental LiDaR scans the complexity of the corresponding point clouds is relatively high. Hence, finding new techniques allowing the efficient extraction and representation of the underlying structural entities becomes an important research issue of recent interest. This thesis introduces new methods regarding the extraction and visualization of structural features like surfaces and curves (e.g. ridge-lines, creases) from 3D (environmental) point clouds. One main part concerns the extraction of curve-like features from environmental point data sets. It provides a new method supporting a stable feature extraction by incorporating a probability-based point classification scheme that characterizes individual points regarding their affiliation to surface-, curve- and volume-like structures. Another part is concerned with the surface reconstruction from (environmental) point clouds exhibiting objects that are more or less complex. A new method providing multi-resolutional surface representations from regular point clouds is discussed. Following the applied principles of this approach a volumetric surface reconstruction method based on the proposed classification scheme is introduced. It allows the reconstruction of surfaces from highly unstructured and noisy point data sets. Furthermore, contributions in the field of reconstructing 3D point clouds from 2D image series are provided. In addition, a discussion concerning the most important properties of (environmental) point clouds with respect to feature extraction is presented.
  • Diese wissenschaftliche Arbeit handelt von der Extraktion und der Darstellung intrinsischer Eigenschaften von dreidimensionalen (3D) Punktwolken. Die zugehörigen Punkte in Form von 3D Koodinaten, wie sie z.B. von Laser-/LiDaR (Light Detection and Ranging) Scannern generiert, oder mithilfe von speziellen Algorithmen aus einer Serie von zweidimensionalen (2D) Bildern rekonstruiert werden, repräsentieren Objekte aus der realen Welt. Abhängig von der fokussierten Szenerie weisen die resultierenden Punktewolken eine Vielfalt unterschiedlichster Strukturen auf. Speziell im Fall von Landschafts- und Umgebungsscans besitzen diese eine hohe Komplexität. Die Entwicklung neuer und effizienter Methoden um solche strukturellen Informationen zu filtern und darzustellen ist ein wichtiger Forschungszweig in der Computer Grafik. Diese Arbeit leistet einen Beitrag hinsichtlich der Extraktion und der Visualisierung besonderer Merkmale wie z.B. flächen- oder kurvenähnlicher Strukturen (ridge-lines, creases) aus 3D Punktewolken. Ein Teil beschäftigt sich dabei mit der Extraktion von kurvenähnlichen Strukturen aus Landschafts- und Umgebungscans. Das vorgestellte Verfahren verwendet ein neuartiges wahrscheinlichkeitsbasiertes Punkte-Klassifizierungsschema, welches die einzelnen Punkte entsprechend ihrer Zugehörigkeit zu flächen-, kurven- und volumenartigen Strukturen analysiert. Ein weiterer Teil dieser Arbeit betrifft die Rekonstruktion von Flächen aus 3D Punktewolken, welche eine moderate bis hohe Komplexität aufweisen. Dabei wird eine neue Methode vorgestellt, welche die Rekonstruktion von Flächen in multiplen Auflösungen erlaubt. Auf diesem Ansatz beruhend wird eine volumen-basierte, implizite Rekonstruktionsmethode eingeführt, die die Rekonstruktion von Flächen aus hochgradig komplexen und verrauschten Punktewolken, unter Verwendung des vorgestellten Punkte-Klassifizierungsschemas, gestattet. Zudem werden Beiträge hinsichtlich der Rekonstruktion von 3D Punktewolken aus einer Serie von 2D Bilder präsentiert, sowie einige der wichtigsten Eigenschaften von 3D Punktewolken, wie sie hauptsächlich von Umgebungsscans generiert werden, diskutiert. Diese Diskussion ist speziell auf die Extraktion von flächen- und kurvenähnlichen Strukturen hin ausgerichtet.

Volltext Dateien herunterladen

Metadaten exportieren

  • Export nach Bibtex
  • Export nach RIS

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Patric Keller
URN (Permalink):urn:nbn:de:hbz:386-kluedo-24070
ISBN:978-3-941438-36-1
ISSN:1610-2673
Schriftenreihe (Bandnummer):Schriftenreihe / Fachbereich Informatik (29)
Betreuer:Hans Hagen
Dokumentart:Dissertation
Sprache der Veröffentlichung:Englisch
Jahr der Fertigstellung:2009
Jahr der Veröffentlichung:2009
Veröffentlichende Institution:Technische Universität Kaiserslautern
Titel verleihende Institution:Technische Universität Kaiserslautern
Datum der Annahme der Abschlussarbeit:20.11.2009
Datum der Publikation (Server):11.12.2009
Freies Schlagwort / Tag:3D Point Data; Computer Graphic; Feature Extraction; Surface Reconstruction; Unorganized Data
GND-Schlagwort:Computergraphik; Datenanalyse; Merkmalsextraktion; Visualisierung
Fachbereiche / Organisatorische Einheiten:Fachbereich Informatik
DDC-Sachgruppen:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Lizenz (Deutsch):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011

$Rev: 13581 $