TOWARDS DYNAMICALLY RECONFIGURABLE MIXED-SIGNAL ELECTRONICS FOR EMBEDDED AND INTELLIGENT SENSOR SYSTEMS

  • Rapid growth in sensors and sensor technology introduces variety of products to the market. The increasing number of available sensor concepts and implementations demands more versatile sensor electronics and signal conditioning. Nowadays signal conditioning for the available spectrum of sensors is becoming more and more challenging. Moreover, developing a sensor signal conditioning ASIC is a function of cost, area, and robustness to maintain signal integrity. Field programmable analog approaches and the recent evolvable hardware approaches offer partial solution for advanced compensation as well as for rapid prototyping. The recent research field of evolutionary concepts focuses predominantly on digital and is at its advancement stage in analog domain. Thus, the main research goal is to combine the ever increasing industrial demand for sensor signal conditioning with evolutionary concepts and dynamically reconfigurable matched analog arrays implemented in main stream Complementary Metal Oxide Semiconductors (CMOS) technologies to yield an intelligent and smart sensor system with acceptable fault tolerance and the so called self-x features, such as self-monitoring, self-repairing and self-trimming. For this aim, the work suggests and progresses towards a novel, time continuous and dynamically reconfigurable signal conditioning hardware platform suitable to support variety of sensors. The state-of-the-art has been investigated with regard to existing programmable/reconfigurable analog devices and the common industrial application scenario and circuits, in particular including resource and sizing analysis for proper motivation of design decisions. The pursued intermediate granular level approach called as Field Programmable Medium-granular mixed signal Array (FPMA) offers flexibility, trimming and rapid prototyping capabilities. The proposed approach targets at the investigation of industrial applicability of evolvable hardware concepts and to merge it with reconfigurable or programmable analog concepts, and industrial electronics standards and needs for next generation robust and flexible sensor systems. The devised programmable sensor signal conditioning test chips, namely FPMA1/FPMA2, designed in 0.35 µm (C35B4) Austriamicrosystems, can be used as a single instance, off the shelf chip at the PCB level for conditioning or in the loop with dedicated software to inherit the aspired self-x features. The use of such self–x sensor system carries the promise of improved flexibility, better accuracy and reduced vulnerability to manufacturing deviations and drift. An embedded system, namely PHYTEC miniMODUL-515C was used to program and characterize the mixed-signal test chips in various feedback arrangements to answer some of the questions raised by the research goals. Wide range of established analog circuits, ranging from single output to fully differential amplifiers, was investigated at different hierarchical levels to realize circuits like instrumentation amplifier and filters. A more extensive design issues based on low-power like for e.g., sub-threshold design were investigated and a novel soft sleep mode idea was proposed. The bandwidth limitations observed in the state of the art fine granular approaches were enhanced by the proposed intermediate granular approach. The so designed sensor signal conditioning instrumentation amplifier was then compared to the commercially available products in the market like LT 1167, INA 125 and AD 8250. In an adaptive prototype, evolutionary approaches, in particular based on particle swarm optimization with multi-objectives, were just deployed to all the test samples of FPMA1/FMPA2 (15 each) to exhibit self-x properties and to recover from manufacturing variations and drift. The variations observed in the performance of the test samples were compensated through reconfiguration for the desired specification.
  • Beiträge zur Entwicklung dynamisch rekonfigurierbarer, gemischt analog-digitaler Elektronik für eingebettete und intelligente Sensorsysteme

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Senthil Kumar Lakshmanan
URN (permanent link):urn:nbn:de:hbz:386-kluedo-22943
Advisor:Andreas König
Document Type:Doctoral Thesis
Language of publication:English
Year of Completion:2008
Year of Publication:2008
Publishing Institute:Technische Universität Kaiserslautern
Granting Institute:Technische Universität Kaiserslautern
Acceptance Date of the Thesis:2008/11/04
Tag:Dynamically reconfigurable analog circuits; dynamic calibration; generic self-x sensor systems; generic sensor interface; self calibration
Faculties / Organisational entities:Fachbereich Elektrotechnik und Informationstechnik
DDC-Cassification:620 Ingenieurwissenschaften und zugeordnete Tätigkeiten

$Rev: 12793 $