Flow-driven orientation dynamics in two classes of fibre suspensions

  • In this dissertation we consider mesoscale based models for flow driven fibre orientation dynamics in suspensions. Models for fibre orientation dynamics are derived for two classes of suspensions. For concentrated suspensions of rigid fibres the Folgar-Tucker model is generalized by incorporating the excluded volume effect. For dilute semi-flexible fibre suspensions a novel moments based description of fibre orientation state is introduced and a model for the flow-driven evolution of the corresponding variables is derived together with several closure approximations. The equation system describing fibre suspension flows, consisting of the incompressible Navier-Stokes equation with an orientation state dependent non-Newtonian constitutive relation and a linear first order hyperbolic system for the fibre orientation variables, has been analyzed, allowing rather general fibre orientation evolution models and constitutive relations. The existence and uniqueness of a solution has been demonstrated locally in time for sufficiently small data. The closure relations for the semiflexible fibre suspension model are studied numerically. A finite volume based discretization of the suspension flow is given and the numerical results for several two and three dimensional domains with different parameter values are presented and discussed.

Volltext Dateien herunterladen

Metadaten exportieren

  • Export nach Bibtex
  • Export nach RIS

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Verfasserangaben:Uldis Strautins
URN (Permalink):urn:nbn:de:hbz:386-kluedo-22461
Betreuer:Oleg Iliev
Sprache der Veröffentlichung:Englisch
Jahr der Fertigstellung:2008
Jahr der Veröffentlichung:2008
Veröffentlichende Institution:Technische Universität Kaiserslautern
Titel verleihende Institution:Technische Universität Kaiserslautern
Datum der Annahme der Abschlussarbeit:21.05.2008
Datum der Publikation (Server):03.07.2008
Freies Schlagwort / Tag:Fiber suspension flow; closure approximation; finite volume method; rheology; well-posedness
Fachbereiche / Organisatorische Einheiten:Fachbereich Mathematik
DDC-Sachgruppen:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
MSC-Klassifikation (Mathematik):35-XX PARTIAL DIFFERENTIAL EQUATIONS / 35Qxx Equations of mathematical physics and other areas of application [See also 35J05, 35J10, 35K05, 35L05] / 35Q35 PDEs in connection withfluid mechanics
76-XX FLUID MECHANICS (For general continuum mechanics, see 74Axx, or other parts of 74-XX) / 76Axx Foundations, constitutive equations, rheology / 76A05 Non-Newtonian fluids
Lizenz (Deutsch):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011

$Rev: 13581 $