Heterogeneous redundancy in software quality prediction using a hybrid Bayesian approach

  • With the ever-increasing significance of software in our everyday lives, it is vital to afford reliable software quality estimates. Typically, quantitative software quality analyses rely on either statistical fault prediction methods (FPMs) or stochastic software reliability growth models (SRGMs). Adopting solely FPMs or SRGMs, though, may result in biased predictions that do not account for uncertainty in the distinct prediction methods; thus rendering the prediction less reliable. This paper identifies flaws of the individual prediction methods and suggests a hybrid prediction approach that combines FPMs and SRGMs. We adopt FPMs for initially estimating the expected number of failures for fi- nite failure SRGMs. Initial parameter estimates yield more accurate reliability predictions until sufficient failures are observed that enable stable parameter estimates in SRGMs. Being at the equilibrium level of FPM and SRGM pre- dictions we suggest combining the competing prediction methods with respect to the principle of heterogeneous redundancy. That is, we propose using the in- dividual methods separately and combining their predictions. In this paper we suggest Bayesian model averaging (BMA) for combining the different methods. The hybrid approach allows early reliability estimates and encourages higher confidence in software quality predictions.

Volltext Dateien herunterladen

Metadaten exportieren

  • Export nach Bibtex
  • Export nach RIS

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:G. Hanselmann, A. Sarishvili
URN (Permalink):urn:nbn:de:hbz:386-kluedo-15476
Schriftenreihe (Bandnummer):Berichte des Fraunhofer-Instituts für Techno- und Wirtschaftsmathematik (ITWM Report) (125)
Dokumentart:Bericht
Sprache der Veröffentlichung:Englisch
Jahr der Fertigstellung:2007
Jahr der Veröffentlichung:2007
Veröffentlichende Institution:Fraunhofer-Institut für Techno- und Wirtschaftsmathematik
Datum der Publikation (Server):18.06.2008
Freies Schlagwort / Tag:Bayesian Model Averaging; Fault Prediction ; Non-homogeneous Poisson Process ; Reliability Prediction
Fachbereiche / Organisatorische Einheiten:Fraunhofer (ITWM)
DDC-Sachgruppen:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Lizenz (Deutsch):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011

$Rev: 13581 $