Feature Based Visualization

  • In this thesis we apply powerful mathematical tools such as interval arithmetic for applications in computational geometry, visualization and computer graphics, leading to robust, general and efficient algorithms. We present a completely novel approach for computing the arrangement of arbitrary implicit planar curves and perform ray casting of arbitrary implicit functions by jointly achieving, for the first time, robustness, efficiency and flexibility. Indeed we are able to render even the most difficult implicits in real-time with guaranteed topology and at high resolution. We use subdivision and interval arithmetic as key-ingredients to guarantee robustness. The presented framework is also well-suited for applications to large and unstructured data sets due to the inherent adaptivity of the techniques that are used. We also approach the topic of tensors by collaborating with mechanical engineers on comparative tensor visualization and provide them with helpful visualization paradigms to interpret the data.
  • Feature-basiert Visualisierung

Volltext Dateien herunterladen

Metadaten exportieren

  • Export nach Bibtex
  • Export nach RIS

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Younis Hijazi
URN (Permalink):urn:nbn:de:hbz:386-kluedo-21704
Betreuer:Hans Hagen
Dokumentart:Dissertation
Sprache der Veröffentlichung:Englisch
Jahr der Fertigstellung:2007
Jahr der Veröffentlichung:2007
Veröffentlichende Institution:Technische Universität Kaiserslautern
Titel verleihende Institution:Technische Universität Kaiserslautern
Datum der Annahme der Abschlussarbeit:14.12.2007
Datum der Publikation (Server):12.03.2008
Freies Schlagwort / Tag:GPU; affine arithmetic; computer graphics; curves and surfaces; interval arithmetic; ray casting; ray tracing; visualization
GND-Schlagwort:Beschränkte Arithmetik ; Computergraphik; Feature ; GPU ; Kurve ; Ray casting ; Visualisierung
Fachbereiche / Organisatorische Einheiten:Fachbereich Informatik
CCS-Klassifikation (Informatik):G. Mathematics of Computing / G.1 NUMERICAL ANALYSIS / G.1.0 General
G. Mathematics of Computing / G.1 NUMERICAL ANALYSIS / G.1.2 Approximation
G. Mathematics of Computing / G.1 NUMERICAL ANALYSIS / G.1.5 Roots of Nonlinear Equations
I. Computing Methodologies / I.3 COMPUTER GRAPHICS / I.3.3 Picture/Image Generation
I. Computing Methodologies / I.3 COMPUTER GRAPHICS / I.3.5 Computational Geometry and Object Modeling
I. Computing Methodologies / I.3 COMPUTER GRAPHICS / I.3.7 Three-Dimensional Graphics and Realism
DDC-Sachgruppen:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Lizenz (Deutsch):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011

$Rev: 13581 $