Functional and Structural Analyses of RTP1, a Rust Haustorial Protein Transferred into Host Plant Cells

  • Haustoria of the rust fungus pathogen Uromyces fabae deliver RTP1 (Rust Transferred Protein1) into host plant cells. In this work, different heterologous expression systems were used to study RTP1 biological function as well as RTP1 transfer mechanism. The first part of this thesis focused on the identification of the subcellular target compartment of RTP1 in plant cells. In this respect we could identify a functional bipartite nuclear localization signal within RTP1. However, stable and transient expression studies of RTP1 in different plant species, including the host plant Vicia faba, interfered with plant cell vitality but did not result in detection of RTP1 protein. These findings led us to propose that RTP1 interferes with plant gene expression. However, the molecular basis of this interference remains unclear. By deletion studies, we could localize the active region of RTP1 within a 45 amino acid central domain. In the second part of this study, two different lines of approaches were taken to study RTP1 transfer mechanism. First, transient expression of secreted RTP1 (sRTP1) also interfered with plant cell vitality. Addition of an endoplasmic reticulum retention signal abolished sRTP1 interference with plant cell vitality, suggesting that RTP1 can reenter the plant cell from the apoplast after secretion in the absence of the pathogen. We have identified a PEST-like region within RTP1, however, contribution of this region to the stability of RTP1 is not clear. Site directed mutagenesis analysis showed that the PEST-like region is likely to play a role during the transfer of RTP1 through plant plasma membrane. In the second line of approach, we established a recombinant delivery model, using Ustilago maydis/Zea mays pathosystem, to pursue RTP1 translocation into the plant cell. Our results indicate that U. maydis is capable of secreting high amounts of recombinant RTP1, showing similar glycosylation pattern as RTP1 secreted from rust haustoria. Our data propose the use of this model system to study RTP1 domains mediating its entry into the plant cell. Haustoria of the rust fungus pathogen Uromyces fabae deliver RTP1 (Rust Transferred Protein1) into host plant cells. In this work, different heterologous expression systems were used to study RTP1 biological function as well as RTP1 transfer mechanism. The first part of this thesis focused on the identification of the subcellular target compartment of RTP1 in plant cells. In this respect we could identify a functional bipartite nuclear localization signal within RTP1. However, stable and transient expression studies of RTP1 in different plant species, including the host plant Vicia faba, interfered with plant cell vitality but did not result in detection of RTP1 protein. These findings led us to propose that RTP1 interferes with plant gene expression. However, the molecular basis of this interference remains unclear. By deletion studies, we could localize the active region of RTP1 within a 45 amino acid central domain. In the second part of this study, two different lines of approaches were taken to study RTP1 transfer mechanism. First, transient expression of secreted RTP1 (sRTP1) also interfered with plant cell vitality. Addition of an endoplasmic reticulum retention signal abolished sRTP1 interference with plant cell vitality, suggesting that RTP1 can reenter the plant cell from the apoplast after secretion in the absence of the pathogen. We have identified a PEST-like region within RTP1, however, contribution of this region to the stability of RTP1 is not clear. Site directed mutagenesis analysis showed that the PEST-like region is likely to play a role during the transfer of RTP1 through plant plasma membrane. In the second line of approach, we established a recombinant delivery model, using Ustilago maydis/Zea mays pathosystem, to pursue RTP1 translocation into the plant cell. Our results indicate that U. maydis is capable of secreting high amounts of recombinant RTP1, showing similar glycosylation pattern as RTP1 secreted from rust haustoria. Our data propose the use of this model system to study RTP1 domains mediating its entry into the plant cell.

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Rafiqi Maryam
URN (permanent link):urn:nbn:de:hbz:386-kluedo-20972
Advisor:Matthias Hahn
Document Type:Doctoral Thesis
Language of publication:English
Year of Completion:2007
Year of Publication:2007
Publishing Institute:Technische Universität Kaiserslautern
Granting Institute:Technische Universität Kaiserslautern
Acceptance Date of the Thesis:2007/03/27
Tag:Avirulence ; Biotrophy ; Haustoria; Rust effector ; Transferred proteins
Faculties / Organisational entities:Fachbereich Biologie
DDC-Cassification:570 Biowissenschaften; Biologie

$Rev: 12793 $