Error estimates for quasistatic global elastic correction and linear kinematic hardening material

  • We consider in this paper the quasistatic boundary value problems of linear elasticity and nonlinear elastoplasticity with linear kinematic hardening material. We derive expressions and estimates for the difference of solutions (i.e. stress, strain and displacement) of both models. Further, we study the error between the elastoplastic solution and the solution of a postprocessing method, that corrects the solution of the linear elastic problem in order to approximate the elastoplastic model.
  • Wir betrachten in diesem Artikel die quasistatischen Randwertprobleme der linearen Elastizitätstheorie und der nichtlinearen Elastoplastizitätstheorie mit linear kinematischen Materialgesetz. Wir leiten Beziehungen und Abschätzungen für die Differenz der Lösungen (d.h. Spannung, Dehnung und Verschiebung) beider Modelle her. Ferner studieren wir den Fehler zwischen der elastoplastischen Lösung und der Lösung einer Postprocessing-Methode, die die Lösung des linear elastischen Problems zur Approximation des elastoplastischen Modells nachkorrigiert.

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Holger Lang, Klaus Dressler, Rene Pinnau, Michael Speckert
URN (permanent link):urn:nbn:de:hbz:386-kluedo-14470
Serie (Series number):Berichte der Arbeitsgruppe Technomathematik (AGTM Report) (267)
Document Type:Report
Language of publication:English
Year of Completion:2006
Year of Publication:2006
Publishing Institute:Technische Universität Kaiserslautern
Creating Corporation:Lang, Holger
Contributing Corporation:Graduiertenkolleg Mathematik und Praxis, TU Kaiserslautern
Date of the Publication (Server):2006/09/21
Tag:Elastisches RWP; Elastoplastisches RWP; Hysterese; Stop-und Play-Operator; Variationsungleichungen
Elastic BVP; elastoplastic BVP; hysteresis; stop- and play-operators; variational inequalities
Faculties / Organisational entities:Fachbereich Mathematik
DDC-Cassification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
MSC-Classification (mathematics):47-XX OPERATOR THEORY / 47Jxx Equations and inequalities involving nonlinear operators [See also 46Txx] (For global and geometric aspects, see 58-XX) / 47J20 Variational and other types of inequalities involving nonlinear operators (general) [See also 49J40]
52-XX CONVEX AND DISCRETE GEOMETRY / 52Axx General convexity / 52A05 Convex sets without dimension restrictions
74-XX MECHANICS OF DEFORMABLE SOLIDS / 74Cxx Plastic materials, materials of stress-rate and internal-variable type / 74C05 Small-strain, rate-independent theories (including rigid-plastic and elasto-plastic materials)
Licence (German):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011

$Rev: 13581 $