A multiaxial stress-strain correction scheme

  • A method to correct the elastic stress tensor at a fixed point of an elastoplastic body, which is subject to exterior loads, is presented and analysed. In contrast to uniaxial corrections (Neuber or ESED), our method takes multiaxial phenomena like ratchetting or cyclic hardening/softening into account by use of Jiang's model. Our numerical algorithm is designed for the case that the scalar load functions are piecewise linear and can be used in connection with critical plane/multiaxial rainflow methods in high cycle fatigue analysis. In addition, a local existence and uniqueness result of Jiang's equations is given.
  • Es wird eine Methode vorgestellt, den elastischen Spannungstensor an einem festen Punkt eines elastoplastischen Körpers, der äußeren Lasten ausgesetzt ist, zu korrigieren. Im Gegensatz zu einachsigen Korrekturen (Neuber oder ESED) berücksichtigt unsere Methode durch die Benutzung des Jiang-Modells mehrachsige Materialphänomene wie Ratchetting oder zyklische Ver-/Entfestigung. Unser Algorithmus ist für den Fall stückweiser linearer skalarer Lastfunktionen zurechtgeschnitten und kann zur Betriebsfestigkeitsberechnung (kritische Schnittebenen, mehrachsiges Rainflow) bei hoher Schwingspielzahl verwendet werden. Zusätzlich wird ein lokaler Existenz- und Eindeutigkeitssatz für die Jiang'schen Gleichungen bewiesen.

Volltext Dateien herunterladen

Metadaten exportieren

  • Export nach Bibtex
  • Export nach RIS

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Holger Lang, Rene Pinnau, Klaus Dreßler
URN (Permalink):urn:nbn:de:hbz:386-kluedo-14105
Schriftenreihe (Bandnummer):Berichte der Arbeitsgruppe Technomathematik (AGTM Report) (263)
Dokumentart:Bericht
Sprache der Veröffentlichung:Englisch
Jahr der Fertigstellung:2005
Jahr der Veröffentlichung:2005
Veröffentlichende Institution:Technische Universität Kaiserslautern
Beteiligte Körperschaft:DFG (GKMP Kaiserslautern), AG Technomathematik Kaiserslautern, Fraunhofer ITWM Kaiserslautern
Datum der Publikation (Server):21.01.2006
Freies Schlagwort / Tag:Betriebsfestigkeit; Differentialinklusionen; Elastoplastizität; Filippov-Theorie; Jiang-Modell
Elastoplasticity; Filippov theory; Jiang's model; differential inclusions; durability
Fachbereiche / Organisatorische Einheiten:Fachbereich Mathematik
DDC-Sachgruppen:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
MSC-Klassifikation (Mathematik):65-XX NUMERICAL ANALYSIS / 65Lxx Ordinary differential equations / 65L06 Multistep, Runge-Kutta and extrapolation methods
74-XX MECHANICS OF DEFORMABLE SOLIDS / 74Cxx Plastic materials, materials of stress-rate and internal-variable type / 74C15 Large-strain, rate-independent theories (including nonlinear plasticity)
74-XX MECHANICS OF DEFORMABLE SOLIDS / 74Dxx Materials of strain-rate type and history type, other materials with memory (including elastic materials with viscous damping, various viscoelastic materials) / 74D10 Nonlinear constitutive equations
Lizenz (Deutsch):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011

$Rev: 13581 $