Aggregation of Large-Scale Network Flow Problems with Application to Evacuation Planning at SAP

  • Our initial situation is as follows: The blueprint of the ground floor of SAP’s main building the EVZ is given and the open question on how mathematic can support the evacuation’s planning process ? To model evacuation processes in advance as well as for existing buildings two models can be considered: macro- and microscopic models. Microscopic models emphasize the individual movement of evacuees. These models consider individual parameters such as walking speed, reaction time or physical abilities as well as the interaction of evacuees during the evacuation process. Because of the fact that the microscopic model requires lots of data, simulations are taken for implementation. Most of the current approaches concerning simulation are based on cellular automats. In contrast to microscopic models, macroscopic models do not consider individual parameters such as the physical abilities of the evacuees. This means that the evacuees are treated as a homogenous group for which only common characteristics are considered; an average human being is assumed. We do not have that much data as in the case of the microscopic models. Therefore, the macroscopic models are mainly based on optimization approaches. In most cases, a building or any other evacuation object is represented through a static network. A time horizon T is added, in order to be able to describe the evolution of the evacuation process over time. Connecting these two components we finally get a dynamic network. Based on this network, dynamic network flow problems are formulated, which can map evacuation processes. We focused on the macroscopic model in our thesis. Our main focus concerning the transfer from the real world problem (e.g. supporting the evacuation planning) will be the modeling of the blueprint as a dynamic network. After modeling the blueprint as a dynamic network, it will be no problem to give a formulation of a dynamic network flow problem, the so-called evacuation problem, which seeks for an optimal evacuation time. However, we have to solve a static large-scale network flow problem to derive a solution for this formulation. In order to reduce the network size, we will examine the possibility of applying aggregation to the evacuation problem. Aggregation (lat. aggregare = piling, affiliate; lat. aggregatio = accumulation, union; the act of gathering something together) was basically used to reduce the size of general large-scale linear or integer programs. The results gained for the general problem definitions were then applied to the transportation problem and the minimum cost network flow problem. We review this theory in detail and look on how results derived there can be used for the evacuation problem, too.

Volltext Dateien herunterladen

Metadaten exportieren

  • Export nach Bibtex
  • Export nach RIS

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Florian Dreifus
URN (Permalink):urn:nbn:de:hbz:386-kluedo-13855
Dokumentart:Diplomarbeit
Sprache der Veröffentlichung:Englisch
Jahr der Fertigstellung:2005
Jahr der Veröffentlichung:2005
Veröffentlichende Institution:Technische Universität Kaiserslautern
Titel verleihende Institution:Technische Universität Kaiserslautern
Datum der Publikation (Server):09.08.2005
Freies Schlagwort / Tag:Dynamic Network Flow Problem ; Evacuation Planning ; Large-Scale Problems; Minimum Cost Network Flow Problem ; Transportation Problem
GND-Schlagwort:Aggregation
Fachbereiche / Organisatorische Einheiten:Fachbereich Mathematik
DDC-Sachgruppen:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
MSC-Klassifikation (Mathematik):90-XX OPERATIONS RESEARCH, MATHEMATICAL PROGRAMMING / 90Cxx Mathematical programming [See also 49Mxx, 65Kxx] / 90C06 Large-scale problems
90-XX OPERATIONS RESEARCH, MATHEMATICAL PROGRAMMING / 90Cxx Mathematical programming [See also 49Mxx, 65Kxx] / 90C08 Special problems of linear programming (transportation, multi-index, etc.)
90-XX OPERATIONS RESEARCH, MATHEMATICAL PROGRAMMING / 90Cxx Mathematical programming [See also 49Mxx, 65Kxx] / 90C35 Programming involving graphs or networks [See also 90C27]
90-XX OPERATIONS RESEARCH, MATHEMATICAL PROGRAMMING / 90Cxx Mathematical programming [See also 49Mxx, 65Kxx] / 90C90 Applications of mathematical programming
Lizenz (Deutsch):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011

$Rev: 13581 $