Trockenharnstoff-SCR-System und Betriebsstrategie für Fahrzeuge mit Dieselmotor

SCR System using solid Urea and Operating Strategy for vehicles with Diesel Engines

  • Es wurde ein fahrzeugtaugliches SCR-Gesamtsystem auf der Basis von trockenem Harnstoff dargestellt, bei dem die Reduktionsmittelaufbereitung in einem elektrisch beheizten Reaktor erfolgt. Trockener Harnstoff bietet gegenüber der wässrigen Harnstofflösung eine Gewichtsersparnis von 67,5% und eine uneingeschränkte Wintertauglichkeit. Im externen Reaktor wird der Harnstoff unter stets optimalen Reaktionsbedingungen zersetzt. Der Harnstoff wird in Form von runden Pellets in einem Größenspektrum von 1,8-2,0 mm eingesetzt. Die Dosierung erfolgt durch Vereinzeln der Pellets mit einem Zellenraddosierer. Der Harnstoffmengenstrom wird durch Veränderung der Pausenzeit zwischen zwei Einzelportionen angepasst. Mit dem Dosiersystem ist die Reduktionsmittelversorgung im gesamten Motorkennfeld gewährleistet. Der Transport der Pellets vom Dosierer zum Reaktor erfolgt sequenziell durch eine Leitung nach dem Blasrohrprinzip mittels Druckluft. Die Druckluft wird durch einen Kompressor bereitgestellt. Das Förderprinzip ermöglicht einen Pellettransport über mehrere Meter, wobei Krümmungsradien bis 40 mm und vertikale Förderung entgegen der Schwerkraft unproblematisch sind. Der Reaktor besteht aus einer Thermolysekammer mit elektrisch auf 400°C beheizten Wänden und einem nachgeschalteten Hydrolysekatalysator. Die Harnstoffpellets werden in die Kammer eingebracht und thermisch zersetzt. Das für die Hydrolyse benötigte Wasser wird durch einen Abgasteilstrom bereitgestellt, der in die Thermolysekammer eingekoppelt und dort ebenfalls aufgeheizt wird. Die Zersetzungsprodukte Ammoniak und Kohlendioxid werden in den Abgashauptstrom eingebracht. Mit dem Gesamtsystem werden unter optimalen Randbedingungen NOx-Konvertierungsraten über 99% erreicht. Die NOx - und NH3-Bilanz zeigt allerdings, dass der Reduktionsmittelnutzungsgrad lediglich bei etwa 85% liegt. Im Hydrolysekatalysator wird ein Anteil des Ammoniaks oxidiert. Ein weiterer Teil wird durch Nebenreaktionen am SCR-Katalysator verbraucht. Das Verhalten des SCR-Katalysators unter dynamischen Betriebsbedingungen wurde mit Hilfe eines mathematischen Modells diskutiert. Das NH3-Adsorptionsvermögen des SCR-Katalysators nimmt mit steigender Temperatur stark ab. Gleichzeitig wird bei niedrigen Temperaturen bis etwa 250°C ein vergleichsweise hohes NH3-Beladungsniveau benötigt, um maximale NOx-Konvertierung zu erzielen. Bei höheren Temperaturen verläuft die SCR-Reaktion hingegen spontan in einer kurzen Reaktionszone am Katalysatoreintritt. Bei einem Wechsel des Motorbetriebspunktes von niedriger auf hohe Last steigt die Katalysatortemperatur schnell an. Das Adsorptionsvermögen des Katalysators nimmt ab. Wenn die eingespeicherte Reduktionsmittelmenge nicht in der SCR-Reaktion verbraucht wird, kommt es zu NH3-Schlupf. Bei niedrigeren Temperaturen muss daher die NH3-Beladung begrenzt werden. Dies hat allerdings eine verminderte NOx-Konvertierung zur Folge. Der Einfluss verschiedener Parameter auf den NOx-Umsatz und den Reduktionsmittelverbrauch wurde anhand des MVEG-Zyklus diskutiert. Durch kurzzeitige Hochdosierung und anschließende Anpassung der Reduktionsmittelmenge an den momentanen Umsatz wird die beste Ausnutzung des eingebrachten Reduktionsmittels erzielt. Ein optimierter NO2-Anteil bewirkt insbesondere in der Startphase eine höhere NOx-Konvertierungsrate. Ein größerer SCR-Katalysator vermindert die NH3-Schlupfgefahr. Die Reduktionsmittelausnutzung nimmt jedoch ab, so dass ein größerer Reduktionsmittelanteil im Katalysator verbleibt. Durch motornahe Positionierung erfährt der SCR-Katalysator ein höheres Temperaturkollektiv. Der NOx-Umsatz steigt dadurch deutlich. Gleichzeitig ist die im Katalysator verbleibende Reduktionsmittelmenge geringer. Dies erlaubt eine einfache Dosierstrategie, bei der sich die Reduktionsmitteldosierung an der momentanen Stickoxidkonvertierung orientiert. Für das Gesamtsystem wurde eine Betriebsstrategie erarbeitet, die gezielt auf die funktionalen Grenzen der Systemkomponenten abgestimmt ist. Die zugrunde liegende Emissionsminderungsstrategie sieht eine konstante fahrstreckenbezogene NOx-Minderung in allen Betriebszuständen vor. Hierdurch ist es möglich, sowohl alle für die Zertifizierung erforderlichen Abgasgrenzwerte zu unterschreiten, als auch eine deutliche Emissionsminderung außerhalb der prüfrelevanten Fahrzyklen zu erzielen. Gleichzeitig kann für eine definierte Fahrstrecke die mitzuführende Reduktionsmittelmenge genau vorhergesagt werden. Das Gesamtsystem wurde in einem EURO III-Versuchsfahrzeug auf dem Rollenprüfstand sowie im Straßenverkehr betrieben. Im Rahmen der bisherigen Tests konnte die Systemfunktion nachgewiesen werden. Im MVEG-Zyklus wird der EURO IV-NOx-Grenzwert mit vorkonditioniertem SCR-Katalysator knapp unterschritten. Durch eine gezielte Abstimmung des Motors auf die Erfordernisse des Abgasnachbehandlungssystems und eine Optimierung des NO2-Anteils ist eine weitere Absenkung des Emissionsniveaus möglich.

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Sebastian Käfer
URN (permanent link):urn:nbn:de:hbz:386-kluedo-18414
Advisor:Werner Müller
Document Type:Doctoral Thesis
Language of publication:German
Year of Completion:2004
Year of Publication:2004
Publishing Institute:Technische Universität Kaiserslautern
Granting Institute:Technische Universität Kaiserslautern
Acceptance Date of the Thesis:2004/12/10
Tag:NOx; SCR ; aftertreatment ; catalysis ; solid urea
GND-Keyword:Abgasnachbehandlung; Dosierung; Emission; Harnstoff; Hydrolyse; Katalyse; NOx; SCR; Simulation; Thermolyse; Trockenharnstoff
Faculties / Organisational entities:Fachbereich Maschinenbau und Verfahrenstechnik
DDC-Cassification:600 Technik, Technologie

$Rev: 12793 $