Wavelet Deformation Analysis for Spherical Bodies

  • In this paper we introduce a multiscale technique for the analysis of deformation phenomena of the Earth. Classically, the basis functions under use are globally defined and show polynomial character. In consequence, only a global analysis of deformations is possible such that, for example, the water load of an artificial reservoir is hardly to model in that way. Up till now, the alternative to realize a local analysis can only be established by assuming the investigated region to be flat. In what follows we propose a local analysis based on tools (Navier scaling functions and wavelets) taking the (spherical) surface of the Earth into account. Our approach, in particular, enables us to perform a zooming-in procedure. In fact, the concept of Navier wavelets is formulated in such a way that subregions with larger or smaller data density can accordingly be modelled with a higher or lower resolution of the model, respectively.

Volltext Dateien herunterladen

Metadaten exportieren

  • Export nach Bibtex
  • Export nach RIS

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Willi Freeden, Volker Michel
URN (Permalink):urn:nbn:de:hbz:386-kluedo-13697
Schriftenreihe (Bandnummer):Schriften zur Funktionalanalysis und Geomathematik (9)
Dokumentart:Preprint
Sprache der Veröffentlichung:Englisch
Jahr der Fertigstellung:2004
Jahr der Veröffentlichung:2004
Veröffentlichende Institution:Technische Universität Kaiserslautern
Datum der Publikation (Server):17.02.2005
Freies Schlagwort / Tag:Cauchy-Navier-Gleichung
Cauchy-Navier equation
GND-Schlagwort:Dirichlet-Problem ; Elastische Deformation ; Kugel ; Mehrskalenanalyse; Neumann-Problem ; Skalierungsfunktion ; Wavelet-Analyse
Quelle:zur Veröffentlichung angenommen durch "International Journal on Wavelets, Multiresolution and Information Processing"
Fachbereiche / Organisatorische Einheiten:Fachbereich Mathematik
DDC-Sachgruppen:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
MSC-Klassifikation (Mathematik):33-XX SPECIAL FUNCTIONS (33-XX DEALS WITH THE PROPERTIES OF FUNCTIONS AS FUNCTIONS) (For orthogonal functions, see 42Cxx; for aspects of combinatorics see 05Axx; for number-theoretic aspects see 11-XX; for representation theory see 22Exx) / 33Fxx Computational aspects / 33F05 Numerical approximation and evaluation [See also 65D20]
42-XX FOURIER ANALYSIS / 42Cxx Nontrigonometric harmonic analysis / 42C40 Wavelets and other special systems
74-XX MECHANICS OF DEFORMABLE SOLIDS / 74Bxx Elastic materials / 74B05 Classical linear elasticity
86-XX GEOPHYSICS [See also 76U05, 76V05] / 86Axx Geophysics [See also 76U05, 76V05] / 86A20 Potentials, prospecting
Lizenz (Deutsch):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011

$Rev: 13581 $