On convergence of certain finite difference discretizations for 1­D poroelasticity interface problems

  • Finite difference discretizations of 1­D poroelasticity equations with discontinuous coefficients are analyzed. A recently suggested FD discretization of poroelasticity equations with constant coefficients on staggered grid, [5], is used as a basis. A careful treatment of the interfaces leads to harmonic averaging of the discontinuous coefficients. Here, convergence for the pressure and for the displacement is proven in certain norms for the scheme with harmonic averaging (HA). Order of convergence 1.5 is proven for arbitrary located interface, and second order convergence is proven for the case when the interface coincides with a grid node. Furthermore, following the ideas from [3], modified HA discretization are suggested for particular cases. The velocity and the stress are approximated with second order on the interface in this case. It is shown that for wide class of problems, the modified discretization provides better accuracy. Second order convergence for modified scheme is proven for the case when the interface coincides with a displacement grid node. Numerical experiments are presented in order to illustrate our considerations.

Volltext Dateien herunterladen

Metadaten exportieren

  • Export nach Bibtex
  • Export nach RIS

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:R. Ewing, O. Iliev, R. Lazarov, A. Naumovich
URN (Permalink):urn:nbn:de:hbz:386-kluedo-13604
Schriftenreihe (Bandnummer):Berichte des Fraunhofer-Instituts für Techno- und Wirtschaftsmathematik (ITWM Report) (69)
Dokumentart:Bericht
Sprache der Veröffentlichung:Englisch
Jahr der Fertigstellung:2004
Jahr der Veröffentlichung:2004
Veröffentlichende Institution:Fraunhofer-Institut für Techno- und Wirtschaftsmathematik
Datum der Publikation (Server):31.01.2005
Freies Schlagwort / Tag:MAC type grid; error estimates; finite volume discretizations; multilayered material; poroelasticity
Fachbereiche / Organisatorische Einheiten:Fraunhofer (ITWM)
DDC-Sachgruppen:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Lizenz (Deutsch):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011

$Rev: 13581 $