UNIVERSITÄTSBIBLIOTHEK

The Finite-Volume-Particle Method for Conservation Laws

  • In the Finite-Volume-Particle Method (FVPM), the weak formulation of a hyperbolic conservation law is discretized by restricting it to a discrete set of test functions. In contrast to the usual Finite-Volume approach, the test functions are not taken as characteristic functions of the control volumes in a spatial grid, but are chosen from a partition of unity with smooth and overlapping partition functions (the particles), which can even move along pre­scribed velocity fields. The information exchange between particles is based on standard numerical flux functions. Geometrical information, similar to the surface area of the cell faces in the Finite-Volume Method and the corresponding normal directions are given as integral quantities of the partition functions. After a brief derivation of the Finite-Volume-Particle Method, this work focuses on the role of the geometric coefficients in the scheme.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:D. Hietel, M. Junk, R. Keck, D. Taleaga
URN (permanent link):urn:nbn:de:hbz:386-kluedo-12857
Serie (Series number):Berichte des Fraunhofer-Instituts für Techno- und Wirtschaftsmathematik (ITWM Report) (22)
Document Type:Report
Language of publication:English
Year of Completion:2001
Year of Publication:2001
Publishing Institute:Fraunhofer-Institut für Techno- und Wirtschaftsmathematik
Date of the Publication (Server):2004/02/02
Faculties / Organisational entities:Fraunhofer (ITWM)
DDC-Cassification:5 Naturwissenschaften und Mathematik / 510 Mathematik
Licence (German):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011