Smoothing Splines in Multiscale Geopotential Determination from Satellite Data

  • SST (satellite-to-satellite tracking) and SGG (satellite gravity gradiometry) provide data that allows the determination of the first and second order radial derivative of the earth's gravitational potential on the satellite orbit, respectively. The modeling of the gravitational potential from such data is an exponentially ill-posed problem that demands regularization. In this paper, we present the numerical studies of an approach, investigated in [24] and [25], that reconstructs the potential with spline smoothing. In this case, spline smoothing is not just an approximation procedure but it solves the underlying compact operator equation of the SST-problem and the SGG-problem. The numerical studies in this paper are performed for a simplified geometrical scenario with simulated data, but the approach is designed to handle first or second order radial derivative data on a real satellite orbit.
  • SST (satellite-to-satellite tracking) und SGG (satellite gravity gradiometry) liefern Daten, die eine Bestimmung der ersten bzw. zweiten Radialableitung des Gravitationspotentials der Erde auf Höhe des Satellitenorbits erlauben. Die Modellierung des Gravitationspotentials aus solchen Daten stellt ein exponentiell schlecht gestelltes Problem dar, das eine Regularisierung erfordert. In dieser Veröffentlichung präsentieren wir numerische Studien zu einem Ansatz, der in [24] und [25] untersucht wurde und das Potential mittels glättender Splines rekonstruiert. In diesem Fall sind glättende Splines nicht nur ein Approximationsverfahren, sondern sie lösen die zugrunde liegende kompakte Operatorgleichung des SST-Problems und des SGG-Problems. Die numerischen Studien in diesem Artikel wurden für ein vereinfachtes geometrisches Szenario mit simulierten Daten durchgeführt, aber das Verfahren ist dazu konzipiert, erste oder zweite Radialableitungsdaten auf einem realen Orbit verarbeiten zu können.

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Kerstin Hesse, Martin Gutting
URN (permanent link):urn:nbn:de:hbz:386-kluedo-12501
Serie (Series number):Berichte der Arbeitsgruppe Technomathematik (AGTM Report) (255)
Document Type:Preprint
Language of publication:English
Year of Completion:2003
Year of Publication:2003
Publishing Institute:Technische Universität Kaiserslautern
Tag:Glättungsparameterwahl; L-curve Methode
GND-Keyword:Glättung ; Gravitationsfeld ; Harmonische Spline-Funktion; Inverses Problem ; Mehrskalenanalyse ; Wavelet
Faculties / Organisational entities:Fachbereich Mathematik
DDC-Cassification:510 Mathematik
MSC-Classification (mathematics):65D07 Splines
65D10 Smoothing, curve fitting
65R32 Inverse problems
65T60 Wavelets
86A30 Geodesy, mapping problems

$Rev: 12793 $