Bildung schwachgebundener atomarer negativer Ionen in Stößen mit zustandsselektierten Rydberg-Atomen

  • Ziel der vorliegenden Arbeit war es, ein besseres Verständnis der Bildung atomarer negativer Ionen in Stößen mit zustandsselektierten Rydbergatomen zu schaffen. In einem Kreuzstrahlexperiment wurde mittels Massenspektrometrie die Bildung schwachgebundener atomarer negativer Ionen in thermischen Stößen (mittlere kinetische Energie 90*230 meV) von zustandsselektierten Ne(ns,J=2) und Ne(nd,J=4) Rydberg-Atomen mit Grundzustandsatomen untersucht. Der n-abhängige Ratenkoeffizient für die Prozesse Ne(nl) + CaNe + CaNe (nl) + SrNe + Sr wurde bei zwei verschiedenen mittleren Stoßenergien bestimmt. Die experimentellen Resultate wurden mit Modellrechnungen, basierend auf einem Kurvenkreuzungsmodell und einer modifizierten adiabatischen Theorie, verglichen. Im Experiment kreuzt ein kollimierter Strahl metastabiler Edelgasatome Ne, die in einer Gleichstromentladung erzeugt werden, einen kollimierten Strahl von Erdalkali-Atomen, der in einem Ofen unter effusiven Bedingungen produziert wird. Im Kreuzungsgebiet werden Ne(ns,J=2) oder Ne(nd,J=4) Rydberg-Zustände bevölkert; dies erfolgt in einer zweistufigen Laseranregung der Ne Atome über den Zwischenzustand Ne. Die beim Elektronentransfer entstandenen positiven und negativen Ionen wurden mit einem Quadrupol-Massenspektrometer an einem Channel-Plate-Detektor nachgewiesen. Zur Kalibrierung der Spektren wurde SF-Gas diffus in den Reaktionsraum eingelassen. Die bekannten n-abhängigen Ratenkoeffizienten für die Bildung von SF in Stößen mit Ne(nl) Rydberg-Atomen ermöglichte die Bestimmung des relativen Ratenkoeffizienten für die Bildung von Ca und Sr. Der n-abhängige Ratenkoeffizient für die Bildung von Ca oder Sr zeigt ein resonanzartiges Verhalten als Funktion der Bindungsenergie des Rydbergelektrons. Die Position des Maximums hängt dabei von der Elektronenaffinität und der mittleren kinetischen Energie ab. Die beobachteten Maxima liegen bei effektiven Hauptquantenzahlen im Bereich n = 9*11.5. Das Maximum für den Elektronentransfer aus Ne(ns) und Ne(nd) Zuständen tritt bei dem gleichen Wert von n auf; dabei ist der Ratenkoeffizient im Maximum für Ne(ns) Zustände etwa 20-60% höher als für Ne(nd)-Zustände. Zum Verständnis der experimentellen Daten wurden Modellrechnungen durchgeführt, wobei der Wirkungsquerschnitt für die Bildung negativer Ionen in Abhängigkeit von n i) anhand eines parameterfreien Kurvenkreuzungsmodells in Zusammenarbeit mit C. Desfrancóis und ii) basierend auf einer modifizierten adiabatischen Theorie von I. I. Fabrikant bestimmt wurde. Das parameterfreie Kurvenkreuzungsmodell wurde bereits erfolgreich zur Beschreibung der Bildung dipolgebundener Moleküle in Stößen mit zustandsselektierten Rydbergatomen eingesetzt. Im Kurvenkreuzungsmodell i) werden die beiden ionischen Zustände und eine hohe Anzahl kovalenter Potentialkurven in einem gekoppelten System (ohne Berücksichtigung von Interferenz- Effekten) betrachtet, wobei für die Wahrscheinlichkeit, von einer kovalenten zu einer ionischen Potentialkurve zu wechseln, die Landau-Zener- Übergangswahrscheinlichkeit eingesetzt wird. In Modell ii) wird nur jeweils eine ionische und kovalente Potentialkurve des Systems betrachtet. Nach der Bildung der Ionen wird der Zerfall des negativen Ions im Coulombfeld des positiven Ions berücksichtigt; dieser Zerfall entspricht dem Effekt der Mehrfachkurvenkreuzungen im Kurvenkreuzungsmodell. Zur Berücksichtigung der Feinstruktur wird in Modell ii) der Wirkungsquerschnitt entsprechend dem statistischen Mittel der negativen Ionen ermittelt. Die Ratenkoeffizienten wurden durch Mittelung über die Verteilung der Relativenergie bestimmt. Beide Modelle geben den experimentell bestimmten Verlauf des Ratenkoeffizienten für die Bildung von Ca- und Sr-Ionen gut wieder. Es hat sich gezeigt, daß unter den realisierbaren experimentellen Bedingungen die kinetische Energie einen entscheidenden Einfluß auf die Bildung der negativen Ionen hat, da das entstandene Ionenpaar genügend kinetische Energie zur Verfügung haben muß, um die Coulombanziehung zu überwinden. Die Untersuchung der Bildung von Yb*Ionen (erwartete Bindungsenergie 3 meV) in Stößen mit zustandsselektierten Ar(nd)-Rydbergatome zeigte im Bereich 21 n 3 keinen Hinweis auf die Existenz eines langlebigen Yb-Ions. In Kombination mit Abschätzungen zum Felddetachment negativer Ionen im elektrischen Feld des Quadrupolmassenspektrometers ergibt sich aus diesen Befunden die Aussage, daß die Bindungsenergie von Yb-Ionen * falls sie überhaupt existieren * geringer als 2 meV sein muß. Die Resultate dieser Arbeit konnten die scharfe Resonanz für Ca-Bildung bei n = 23.9, die von McLaughlin und Duquette beobachtet wurde, nicht reproduzieren. Die nach dem Resonanzmodell von I. I. Fabrikant vorhergesagte Bildung negativer Ca*Ionen bei EA(Ca) E!,(Ne(nl)) wurde nicht bestätigt. Das beobachtete resonanzartige Verhalten des Ratenkoeffizienten für die Bildung von Ca und Sr in Stößen mit zustandsselektierten Rydberg-Atomen ist ähnlich mit den Ergebnissen für die Bildung dipolgebundener molekularer Anionen. Dieses Verhalten kann durch ein Kurvenkreuzungsmodell oder eine modifizierte adiabatische Theorie beschrieben werden. Quantitativ ergibt sich aus KKM-Rechnungen folgende Relation zwischen der Bindungsenergie EA im Bereich 2-100 meV und der Position des Maximums n des Ratenkoeffizienten für die Bildung schwachgebundener atomarer negativer Ionen: n = (225738 meV/ EA) bzw. EA = 225738 meV/(n).

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Monika Reicherts
URN (permanent link):urn:nbn:de:bsz:386-kluedo-13696
Advisor:H. Hotop
Document Type:Doctoral Thesis
Language of publication:German
Year of Completion:2000
Year of Publication:2000
Publishing Institute:Technische Universität Kaiserslautern
Granting Institute:Technische Universität Kaiserslautern
Acceptance Date of the Thesis:2000/10/27
Faculties / Organisational entities:Fachbereich Physik
DDC-Cassification:530 Physik

$Rev: 12793 $