The continuous stop location problem in public transportation networks

  • In this paper we consider the location of stops along the edges of an already existing public transportation network. This can be the introduction of bus stops along some given bus routes, or of railway stations along the tracks in a railway network. The positive effect of new stops is given by the better access of the potential customers to their closest station, while the increasement of travel time caused by the additional stopping activities of the trains leads to a negative effect. The goal is to cover all given demand points with a minimal amount of additional traveling time, where covering may be defined with respect to an arbitrary norm (or even a gauge). Unfortunately, this problem is NP-hard, even if only the Euclidean distance is used. In this paper, we give a reduction to a finite candidate set leading to a discrete set covering problem. Moreover, we identify network structures in which the coefficient matrix of the resulting set covering problem is totally unimodular, and use this result to derive efficient solution approaches. Various extensions of the problem are also discussed.

Volltext Dateien herunterladen

Metadaten exportieren

  • Export nach Bibtex
  • Export nach RIS

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Verfasserangaben:A. Schöbel, H. W. Hamacher, A. Liebers, D. Wagner
URN (Permalink):urn:nbn:de:hbz:386-kluedo-11930
Schriftenreihe (Bandnummer):Report in Wirtschaftsmathematik (WIMA Report) (81)
Sprache der Veröffentlichung:Englisch
Jahr der Fertigstellung:2002
Jahr der Veröffentlichung:2002
Veröffentlichende Institution:Technische Universität Kaiserslautern
Datum der Publikation (Server):21.05.2002
Fachbereiche / Organisatorische Einheiten:Fachbereich Mathematik
DDC-Sachgruppen:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Lizenz (Deutsch):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011

$Rev: 13581 $