Point-to-Point Trajectory Planning of Flexible Redundant Robot Manipulators Using Genetic Algorithms

  • The paper focuses on the problem of point-to-point trajectory planning for flexible redundant robot manipulators (FRM) in joint space. Compared with irredundant flexible manipulators, a FRM possesses additional possibilities during point-to-point trajectory planning due to its kinematics redundancy. A trajectory planning method to minimize vibration and/or executing time of a point-to-point motion is presented for FRM based on Genetic Algorithms (GAs). Kinematics redundancy is integrated into the presented method as planning variables. Quadrinomial and quintic polynomial are used to describe the segments that connect the initial, intermediate, and final points in joint space. The trajectory planning of FRM is formulated as a problem of optimization with constraints. A planar FRM with three flexible links is used in simulation. Case studies show that the method is applicable.

Download full text files

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author:Shigang Yue, Dominik Henrich, W. L. Xu, S. K. Tso
URN:urn:nbn:de:hbz:386-kluedo-11593
Document Type:Preprint
Language of publication:English
Year of Completion:2001
Year of first Publication:2001
Publishing Institution:Technische Universität Kaiserslautern
Date of the Publication (Server):2001/09/03
Tag:AG-RESY; RODEO; flexible-link robot; genetic algorithms; point-to-point; redundancy; trajectory planning; vibration
Faculties / Organisational entities:Kaiserslautern - Fachbereich Informatik
DDC-Cassification:0 Allgemeines, Informatik, Informationswissenschaft / 004 Informatik
Collections:AG RESY
Licence (German):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011