UNIVERSITÄTSBIBLIOTHEK

States of quantum systems and their liftings

  • Abstract: Let H_1 , H_2 be complex Hilbert spaces, H be their Hilbert tensor product and let tr_2 be the operator of taking the partial trace of trace class operators in H with respect to the space H_2 . The operation tr_2 maps states in H (i.e. positive trace class operators in H with trace equal to one) into states in H_1 . In this paper we give the full description of mappings that are linear right inverse to tr_2 . More precisely, we prove that any affine mapping F(W) of the convex set of states in H_1 into the states in H that is right inverse to tr_2 is given by W -> W x D for some state D in H_2 . In addition we investigate a representation of the quantum mechanical state space by probability measures on the set of pure states and a representation - used in the theory of stochastic Schrödinger equations - by probability measures on the Hilbert space. We prove that there are no affine mappings from the state space of quantum mechanics into these spaces of probability measures.

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Joachim Kupsch
URN (Permalink):urn:nbn:de:hbz:386-kluedo-11261
Dokumentart:Preprint
Sprache der Veröffentlichung:Englisch
Jahr der Fertigstellung:2000
Jahr der Veröffentlichung:2000
Veröffentlichende Institution:Technische Universität Kaiserslautern
Datum der Publikation (Server):05.04.2001
Fachbereiche / Organisatorische Einheiten:Fachbereich Physik
DDC-Sachgruppen:5 Naturwissenschaften und Mathematik / 530 Physik
Lizenz (Deutsch):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011