Earliest Arrival Flow with Time Dependent Capacity Approach to the Evacuation Problems

  • Abstract: Evacuation problems can be modeled as flow problems in dynamic networks. A dynamic network is defined by a directed graph G = (N,A) with sources, sinks and non-negative integral travel times and capacities for every arc (i,j) e A. The earliest arrival flow problem is to send a maximum amount of dynamic flow reaching the sink not only for the given time horizon T, but also for any time T' < T . This problem mimics the evacuation problem of public buildings where occupancies may not known. For the buildings where the number of occupancies is known and concentrated only in one source, the quickest flow model is used to find the minimum egress time. We propose in this paper a solution procedure for evacuation problems with a single source of the building where the occupancy number is either known or unknown. The possibility that the flow capacity may change due to the increasing of smoke density or fire obstructions can be mirrored in our model. The solution procedure looks iteratively for the shortest conditional augmenting path (SCAP) from source to sink and compute the time intervals in which flow reaches the sink via this path.

Metadaten exportieren

  • Export nach Bibtex
  • Export nach RIS

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Stevanus A. Tjandra
URN (Permalink):urn:nbn:de:hbz:386-kluedo-10869
Schriftenreihe (Bandnummer):Report in Wirtschaftsmathematik (WIMA Report) (75)
Dokumentart:Preprint
Sprache der Veröffentlichung:Englisch
Jahr der Fertigstellung:2001
Jahr der Veröffentlichung:2001
Veröffentlichende Institution:Technische Universität Kaiserslautern
Datum der Publikation (Server):26.04.2001
Fachbereiche / Organisatorische Einheiten:Fachbereich Mathematik
DDC-Sachgruppen:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Lizenz (Deutsch):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011

$Rev: 13581 $