Lernen von Abstraktionshierarchien zur Optimierung der Auswahl von maschinell abstrahierten Plänen

  • Mit Hilfe von "Multistrategy" Ansätzen, die erklärungsbasiertes und induktives Lernen integrieren, ist es möglich, die Performanz von Planungssystemen signifikant zu verbessern. Dabei können gelöste Planungsprobleme zunächst mit einem wissensintensiven Verfahren abstrahiert und generalisiert werden. Durch den in diesem Beitrag im Vordergrund stehenden induktiven inkrementellen Lernalgorithmus ist es dann weiterhin möglich, die Gesamtheit des deduktiv generierten Wissens in einer Abstraktionshierarchie anzuordnen. Dabei wird die, im allgemeinen unentscheidbare, "spezieller-als-Relation" zwischen generalisierten Plänen, induktiv aus den gegebenen Planungsfällen gelernt. Diese Abstraktionshierarchie dient dann zur Klassifikation neuer Problemstellungen und damit zur Bestimmung einer speziellsten anwendbaren abstrakten Problemlösung.

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Ralph Bergmann, Wolfgang Wilke
URN (permanent link):urn:nbn:de:hbz:386-kluedo-859
Document Type:Preprint
Language of publication:German
Year of Completion:1994
Year of Publication:1994
Publishing Institute:Technische Universität Kaiserslautern
Faculties / Organisational entities:Fachbereich Informatik
DDC-Cassification:004 Datenverarbeitung; Informatik

$Rev: 12793 $