On the approximation of kinetic equations by moment systems

  • The aim of this article is to show that moment approximations of kinetic equations based on a Maximum Entropy approach can suffer from severe drawbacks if the kinetic velocity space is unbounded. As example, we study the Fokker Planck equation where explicit expressions for the moments of solutions to Riemann problems can be derived. The quality of the closure relation obtained from the Maximum Entropy approach as well as the Hermite/Grad approach is studied in the case of five moments. It turns out that the Maximum Entropy closure is even singular in equilibrium states while the Hermite/Grad closure behaves reasonably. In particular, the admissible moments may lead to arbitrary large speeds of propagation, even for initial data arbitrary close to global eqilibrium.

Metadaten exportieren

  • Export nach Bibtex
  • Export nach RIS

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Wolfgang Dreyer, Michael Junk, Matthias Kunik
URN (Permalink):urn:nbn:de:hbz:386-kluedo-10516
Schriftenreihe (Bandnummer):Berichte der Arbeitsgruppe Technomathematik (AGTM Report) (229)
Dokumentart:Preprint
Sprache der Veröffentlichung:Englisch
Jahr der Fertigstellung:2000
Jahr der Veröffentlichung:2000
Veröffentlichende Institution:Technische Universität Kaiserslautern
Datum der Publikation (Server):17.08.2000
Freies Schlagwort / Tag:Fokker-Planck equation ; Grad expansion ; exact solution ; maximum entropy ; moment methods ; moment realizability
Fachbereiche / Organisatorische Einheiten:Fachbereich Mathematik
DDC-Sachgruppen:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
MSC-Klassifikation (Mathematik):82-XX STATISTICAL MECHANICS, STRUCTURE OF MATTER / 82Cxx Time-dependent statistical mechanics (dynamic and nonequilibrium) / 82C70 Transport processes
Lizenz (Deutsch):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011

$Rev: 13581 $