FAKULTAT FUR INFORMATIK M

der Technischen Universitat Miinchen
Lehrstuhl VIII
Forschungsgruppe Automated Reasoning

|O-0-0—O010—]
|O-0—O0-010—]

Learning from Previous Proof Experience:
A Survey

Report AR-99-4

Jorg Denzinger Matthias Fuchs
Fachbereich Informatik RSISE
Universitat Kaiserslautern Australian National University
Germany Canberra, Australia
Christoph Goller Stephan Schulz
iXEC Executive Information Institut fiur Informatik
Systems GmbH TU Miinchen
Hallbergmoos, Germany Germany

TU Miinchen, Arcisstr. 21, 80290 Miinchen, Germany

Learning from Previous Proof Experience: A Survey

Jorg Denzinger Matthias Fuchs
Fachbereich Informatik RSISE
Universitat Kaiserslautern Australian National University
Germany Canberra, Australia
denzinge@informatik.uni-kl.de fuchs@arp.anu.edu.au
Christoph Goller Stephan Schulz
iXEC Executive Information Systems GmbH Institut fiir Informatik
Hallbergmoos Technische Universitat Miinchen
Germany Germany
c.goller@ixec.com schulz@informatik.tu-muenchen.de
Abstract

We present an overview of various learning techniques used in automated
theorem provers. We characterize the main problems arising in this context and
classify the solutions to these problems from published approaches. We analyze
the suitability of several combinations of solutions for different approaches to the-
orem proving and place these combinations in a spectrum ranging from provers
using very specialized learning approaches to optimally adapt to a small class of
proof problems, to provers that learn more general kinds of knowledge, resulting
in systems that are less efficient in special cases but show improved performance
for a wide range of problems. Finally, we suggest combinations of solutions for
various proof philosophies.

1 Introduction

Over the years, automated deduction systems have reached an impressive level of per-
formance. There are three main reasons for this. Firstly, increasingly efficient inference
engines with good search organization have been employed. Secondly, logical calculi
became more elaborate and allowed a more efficient treatment of many proof problems.
However, a third reason becomes visible if we look at the recent successes of theorem
provers, as for example the proof of the Robbins algebra problem by EQP [Mc97] or
the verification of hard- and software by various interactive provers (see [Re+97] for an
example). These successes have been made possible only by guiding efforts of human
users. The knowledge used in this explicit guidance by users results from the analysis
of many experiments that provided the users with the necessary experience to tackle
interesting tasks. So learning both by the developers and the users of theorem provers
has played a major role in solving difficult problems.

When looking at the provers themselves, however, we do not find many mechanisms
that make use of learning. In most cases, the best one can expect in a fully auto-
mated theorem prover is a selection of various different parameterized search-guiding
heuristics. In this case the user is forced to learn which heuristic and which set of
parameters is likely to perform well in a given proof situation. In interactive provers,
programmable tactics allow the prover to learn (by being taught) about certain proper-
ties of the user, the domain, and the proof tasks. The user is offered a growing number
of control pieces he can use in proof attempts. However, these tactics still have to be
detected, implemented, and selected by the developers and users.

Although the potential of learning for automatic theorem proving systems was acknowl-
edged very early in the history of deduction (see [CL73], pp. 154ff), progress in several
areas of artificial intelligence and automated deduction was necessary to produce the
first convincing solutions. Only in recent years, approaches have been developed for
different deduction systems, different proof philosophies, and different tasks in theorem
provers.

We believe that now is the time to compare and analyze these approaches in order
to provide a classification for interested developers and users, and to characterize the
general problems that have to be addressed when building a learning prover. Guided by
our experience stemming from several funded projects in the area of learning theorem
provers we have observed the following classes of problems evolving in this context:

First, there are the problems concerning the learning process itself (learning phase):

e Whom and what to learn from?
e What to learn?
e How to represent and store the learned knowledge?

e What learning method to use?

The second class of problems is concerned with the usage of learned knowledge (appli-
cation phase):

e How to detect applicable knowledge?
e How to apply knowledge?
e How to detect and deal with misleading knowledge?

e How to combine knowledge from different sources?

And finally, there is a central problem in machine learning. Its answer influences all
solutions to the above problems:

e Which concepts of similarity are helpful?

In this article, we will use these questions as a general framework for learning provers.
For each question/problem we will characterize general classes of answers/solutions
and for each class we will present the approaches from literature that fit into it. We
will also point out additional possible answers that have not been considered so far.

We will see that it is not easy to borrow solutions from other areas of Al, since very often
some preconditions required by these solutions are not valid in automated deduction.
One example is the basic premise of case-based reasoning “small differences in problems
result in small differences in their solutions”, which, at least for intuitive difference
measures, is not fulfilled in most logics and calculi. Therefore substantial modifications
have to be made to use such an approach in automated deduction. We will also
show that AI techniques other than learning, for example planning or multi-agent
systems, often are useful for building a learning theorem prover or for adding learning
components to existing provers.

Naturally, all approaches have strengths and weaknesses, and the solutions to our
problem classes are interrelated. Furthermore, the proof problems that one is interested
in lead to a preference for certain solutions.

The emphasis of this paper is to highlight the general problems that have to be solved,
and to classify the possible solution classes. However, in order to build a complete
learning prover the individual solutions to our nine problems have to be combined.
Therefore, we will analyze possible combinations of solutions to our problem classes
and present the expectations for provers employing these combinations with respect
to the grade of specialization and efficiency. As can be expected, there is a trade-off
between specialization and efficiency. This results in a spectrum of possibilities that
different combinations of techniques can be placed in. We will also analyze the different
requirements imposed by various proof paradigms, in particular the effect of saturating
bottom-up versus analytical top-down procedures, and the influence of fully automated
theorem provers versus interactive ones.

This article is organized as follows: After this introduction, we give a short overview of
automated deduction, theorem provers, and their characteristics influencing the task

3

of learning. In Section 3, we concentrate on the general questions already mentioned,
present possible answers, and analyze the known approaches to learning in theorem
proving with respect to these questions. In Section 4, we highlight some successes of
learning provers and analyze the known approaches with respect to the specialization-
efficiency spectrum and the basic prover characteristics. Finally, in Section 5 we give
some remarks on our expectations for the future development of learning theorem
provers.

2 Automated Deduction

The task of automated deduction is the (partial) mechanization of the following prob-
lem:

Assume a set of terms over a fixed signature, a set of predicate symbols
forming atomic formulae (also called literals) by using these terms as ar-
guments, and a set of quantifiers and logical connectives that allow us to
combine atomic formula into larger aggregates (well-formed formulae). As-
sume further a set of interpretations (i.e. functions) mapping terms to
semantic objects, predicate symbols to predicates over these objects, and
formulae to truth values by a common interpretation of the connectives and
quantifiers. Then our problem is to determine whether a given formula is
interpreted by all the interpretations to a particular truth value.

We call the set of well-formed formulae together with the set of interpretations and
the truth value a logic. The stated problem is the validity problem for a given formula.
Instances of the validity problem will also be called proof problems in the following. The
formulae defining a proof problem are often split up into goal formulae which define
the conjecture that has to be proven and azioms which define the relevant theory or
domain, usually a set of algebraic structures.

There are many different logics. Examples are propositional logic, first-order logic or
the logic resulting by allowing only the initial model of a specification as interpretation.
Different logics can be used to specify and solve the same problem. If all interpretations
of a logic interpret a symbol as the same semantic object, we call this symbol an
interpreted symbol of this logic. Often it is possible to define the laws that describe
such a semantic object in another logic that also incorporates the other syntactic
structures of the first logic (we then say that the first logic is more specialized). So,
semantic information can be expressed in a syntactic way. The best-known example
for an interpreted symbol is the equality predicate in first-order logic with equality. By
adding the laws of reflexivity, symmetry, transitivity and substitutivity for this symbol,
validity problems for a formula of first-order logic with equality can be solved by using
pure first-order logic (although the cost, in terms of additional search space to traverse,
is often prohibitive for practical application).

The mechanization of the problem solving process for the validity problem is based on
logical calculi, which are mainly sets of (inference) rules that describe how to transform

4

sets of formulae or other structures based on formulae (as for example tableaux or
sequents) into new sets or structures. In addition, one needs a transformation of the
given formula into a start state and a condition that determines final states. Solving
a given proof problem then means finding a sequence of applications of inference rules
that transforms its start state into a final state. This is a typical description of a
classical Al search problem.

There are two general types of calculi, generating calculi and analytical calculi, with
some newer calculi combining features from both approaches. The two general classes
require usually quite different learning techniques. We will therefore discuss them in
some detail.

Generating theorem proving calculi use sets of formulae to represent search states.
Typically, there are two types of inference rules: generating rules and contracting rules
[De90]. Generating inferences add new formulae (in the rest of this paper simply called
facts) to the set of formulae that represents the actual state. Contraction inferences
either delete facts or they substitute facts with other (hopefully simpler) ones. The
search process in generating calculi is often called forward chaining, because the search
proceeds from a set of axioms until a certain desired formula is generated. Examples for
generating calculi for first-order logic are resolution (see [R065]) and hyper-resolution
used e.g. by the theorem prover OTTER ([Mc94]). Further examples are superposi-
tion ([BG94]) for first-order logic with equality or proof by consistency ([Ba88]) for
inductive equational logic. The theorem prover DISCOUNT (see [De+97b]), in which
many learning approaches have been tried out, is based on unfailing completion (see
[Ba+89]), a generating calculus for pure equational logic.

In analytical calculi the basic principle is to divide the goal formula (conjecture) by
means of the inference rules into other (hopefully easier to prove) formulae. This
process is repeated until each subgoal is obviously solved by an axiom from the problem
specification. The search state is represented by trees or graphs. Due to the fact that
the inference process starts with the goal, this kind of search is often called backward
chaining. Examples for analytical calculi for first-order logic are the analytical tableau
method (see [Sm68]) or model elimination (see [Lo69]), which is used by the theorem
prover SETHEO ([Le+92]). Further examples of analytical calculi are SLD resolution (as
used in PROLOG, see e.g. [L169]) for Horn logic, or the rippling method for equational
logic (see [Hu96]).

Many calculi for proving in an initial model have both generating and analytical fea-
tures. Performing induction by dividing the problem into the base case and the induc-
tion step is clearly an analytical feature, while the generation of so-called lemmata (by
guessing what may be needed) is a generating rule.

For most interesting logics and associated calculi, there are many different inferences
applicable in a given search state. Therefore a theorem prover needs a control strategy
that defines which of the possible inferences will be performed to determine the succes-
sor state. Typically, a single control strategy is only good for a specific (often small)
set of proof problems. Applied to problems outside this class sequences leading to a
final state cannot be found in acceptable time in most cases.

Naturally, the different types of calculi lead to different heuristics employed in search
strategies. In generating theorem provers, nearly all search strategies try to employ
the contracting inferences as often as possible. Under this assumption, the control of
the generating inferences becomes crucial for the efficiency and eventual success of the
inference process. Control heuristics for these inferences typically base their decision
on (anticipated) syntactic aspects of the formulae that are the source (or result) of
the rule applications. Size, parentage, or similarity to certain formulae are examples
for these aspects. Typically, once a formula is added to the search state, it will only
be removed by a contracting inference (although, of late, “forgetting” of formulae has
proven to be very interesting, see [DF96] and [FF97al).

The situation for analytical theorem provers is different. Most calculi used by analyt-
ical theorem provers are not (proof) confluent. Furthermore, since search states are
represented by quite complex objects, analytical provers normally perform a depth-
first search. Since it is in the general case impossible to decide which of the possible
problem decompositions will lead to a proof, an analytical theorem prover (based on a
non-confluent calculus) has to enumerate all possible decompositions. Therefore, back-
tracking to a prior state plays an important role. At each state an analytical theorem
prover has to decide whether it should try to prove one of the open subgoals via fur-
ther decomposition, or whether it should backtrack to a prior state and try some other
decomposition of this state. Typical control heuristics in analytical theorem provers
base this decision on measures such as the depth of the proof tree, the number and
complexity of subgoals introduced, or the number of free variables occurring in the sub-
goals. Bounds on such measures are used to specify a finite initial part of the search
space which is explored in a depth-first manner. If no proof is found, these bounds are
incremented and the search starts on a bigger finite initial part of the search space. In
this way a breadth-first search is simulated by an iterative deepening depth-first search.
See e.g. [Le+92] for details.

Typically, even good heuristics for both types of provers will result in a high number
of unnecessary applications of inference rules, i.e. inferences not necessary to solve
a given validity problem. For problems of reasonable difficulty typically between one
step per 1000 and one step per 100000 (depending on the calculus) really contributes
to the proof.

In so-called interactive provers, the help of the user is sought to minimize this discrep-
ancy. Naturally, users are interested in minimizing the necessary amount of interaction.
However, in order to give useful hints, the user has to understand the proof the prover
tries to construct. This necessitates a sufficiently high degree of interaction. To limit
the amount of interaction, the developers try to define certain situations in which the
user is asked for help. Typically, a large part of the inferences is performed without in-
teraction, and only the application of a few crucial inference rules is determined by the
user. These crucial inferences often involve guessing steps, as for example the guessing
of a useful lemma or the guessing of an appropriate case analysis.

As this discussion has made obvious, each theorem prover constantly faces the problem
of making decisions. This starts with some aspects of the representation of the problem

to solve, continues with concentrating on the important parts of that problem, and ends
with the selection of the best step out of the set of possible inferences. And decision
making is a task that can profit very much from experience and learning.

3 Learning and Automated Deduction

If one wants to use learning in automated theorem proving, a reasonable idea is to look
at human learning in theorem proving. We can observe that aspects like learning from
examples, analogies between structures and situations, and a miz of many methods and
levels of abstraction play an important role for human mathematicians. If we want to
examine these aspects of learning with regard to their appropriateness for automated
theorem provers, a good starting point is to characterize them according to the level on
which learning takes place. We can identify three distinct levels: The levels of logic and
specification, calculus, and control. Note that this characterization is not completely
sharp and there are some borderline cases.

Many of the aspects of human learning are on the level of logics and specification.
Very often, humans transfer results and proof problems from one logic or specification
to another. This process involves a lot of experience and learning. For example, a
mathematician may first try to find a proof to a problem for a special interpretation
of a logic only (and thus, according to our definition, in a separate logic). The proof
in this restricted logic may then be generalized for all interpretations of the original
logic, i.e. the mathematician learns from the restricted case for the more general one.
Human learning also often involves the use of (counter) models to decide whether
certain directions (conjectures) in a proof search should be rejected. Current theorem
provers lack the ability to make use of such high-level semantic aspects of learning, since
they are usually tied to a single logic and specification, and thus are not equipped to
use meta-reasoning about different logics and their suitability for a given problem, or
to translate knowledge and experiences from one logic to another. Therefore, learning
for automated theorem provers so far has been restricted to the levels of calculus and
control.

On the second level, the level of calculus, learning leads to new inference rules, lem-
mata, or additional axioms. Humans often rely on a large set of interpreted symbols
with adequate decision procedures (or approximations of such procedures) that have
been acquired during many experiences with these special operators. Such decision
procedures can also be regarded as extensions of given calculi. However, more infer-
ence rules and more axioms, while useful in many situations, also result in a broader
search space. This broader search space may quickly become unmanageable if not ac-
companied by additional control knowledge. Therefore, for automated theorem provers
which learn on the calculus level, additional control knowledge or even learning on the
control level is indispensable.

Human beings also develop good control strategies as they gain experience with a
given calculus or in a given domain. New conditions about the use of certain rules
or methods, as well as priorities among various possibilities, perhaps with semantic

7

context conditions, are learned during the many exercises that a student of mathematics
has to perform. Since coping with semantic information is no big problem for humans,
they can easily control different solution approaches to problems and they may even use
and control different calculi and logics for different parts of a proof. Automated theorem
provers have to control inference rules of calculi that are not typical for human problem
solving behavior. Therefore, human control techniques as well as learning techniques
cannot be transferred directly to automated theorem proving systems. Nevertheless,
most learning theorem provers use previous experience to learn on the control level.

As the previous paragraphs have shown, the three levels logic, calculus, and control are
not very good candidates for a classification of learning theorem provers. In fact, it is
impossible to find a classification such that each known learning prover fits in exactly
one class while still having classes that contain more than one or two provers. The
different calculi and proof paradigms already would result in so many classes that the
particular aspects of learning would become veiled and the whole classification would
be useless for practical purposes.

Whiile it is very difficult to compare whole learning provers employing different logics
and/or different calculi, it is nevertheless possible to define basic questions/problems
that each learning prover has to solve. And for each of these problems certain classes of
solutions can be identified that in most cases are independent of logic and calculus of
a prover (although for some of the problems there is always the “interactive” solution,
i.e. delegating it to the user, see, for example, Sections 3.5 and 3.7).

We have identified nine fundamental problems that arise in the context of learning for
theorem proving. As already mentioned in Section 1, they can be assigned to one of two
phases, namely the learning and the application phase. One problem, selecting suitable
concepts of similarity, influences the solutions to all other problems and therefore is not
confined to any one of the phases. In each of the following sections we will deal with
one of the fundamental problems by first motivating what the problem is (if necessary)
and then presenting the general classes of solutions to the problem. For each class we
will characterize the solution idea to the problem (if not obvious) and then present the
known instances of the solution idea from literature.

3.1 Whom and What to Learn From?

The first problem, when dealing with learning, is to determine whom and what to learn
from. As this phrasing already suggests, there are different possibilities both for where
to get data from and for what this data exactly is. These different possibilities can be
exploited both by human beings and computer systems. Let us first look at who can
provide data. In principle, a learning system can learn by itself or with the aid of a
teacher. For a theorem proving system this offers three different possibilities:

e Learning from its own experiences.

e Learning from data provided by a human being.

e Learning from experiences of other systems.

Due to the, for a human being, unusual calculi used by theorem provers, most sys-
tems learn from their own experiences (e.g. [SE90], [KW94], [Go94], [Fu95], [DS96b],
[De+97a], [Fu97c|, and [Go97]). In interactive provers, those experiences naturally in-
volve user interactions so that in these cases we have a mixture of the first and second
possibility [Me95]. However, the emphasis is clearly on learning from own experiences
(with users providing input leading to own experiences).

Learning from data provided by the user can, in a rudimentary form, be observed
in OTTER ([Mc94]) in form of the so-called hot-list. In [Wo96] it is reported, that
OTTER uses text book proofs by adding the formulae occurring in these proofs to a
hot-list. Whenever OTTER encounters a formula from this list during its search, it
puts more emphasis on this formula and its descendants. While one cannot call this
exactly learning, it can be thought of as tutoring by the user, and it may be a good
starting point for developing a learning prover (see also [Ve96]).

Learning from experiences of other systems is also not much exploited. In order to
employ this type of learning, a system has to understand the output of the system
that it learns from. Unfortunately, for most systems the documentation of their out-
put is not very detailed and therefore it is difficult to interpret this output for other
systems. The provers DISCOUNT (see [De+97b]) and WALDMEISTER (see [Hi+97])
produce their proofs in the PCL format (see [DS96a]), and therefore DISCOUNT can
learn from WALDMEISTER proofs. In the ILF system (see [Da+94]) proofs of several
systems can be transformed into proofs in the block calculus (see [DW96]). This may
give access to (parts of) the experience of all these provers in the future.

A second dimension of the central question of this section, namely whom and what to
learn from, is how many different experiences or lessons from teachers are actually used
for learning how to solve a particular new proof problem. Approaches which are in the
broadest sense related to theorem proving by analogy (see e.g. [KW94], [Me95], [Fu95],
and [Fu96]) select experiences from a single solved problem (called source problem) to
help proving a new problem. We will deal with some implications of this in Sections
3.3, 3.5, and 3.7. Other approaches (see e.g. [DS96b], [Go94], and [Go97]) are capable
of abstracting and generalizing experiences stemming from several solved problems
(often called training problems in this context) and of using this abstracted knowledge
efficiently for further decisions.

Now, let us take a closer look on what experiences can be used to learn from. Obviously,
the steps taken by a prover in order to solve a problem may form a useful experience.
However, information about steps not taken, as well as information about steps taken,
but not contributing to a proof, can be valuable as well. Therefore, an important
classification of experiences used for learning is the split into

e positive experiences and

e negative experiences,

where positive means experiences that result from steps useful in a proof attempt, while
negative means information about steps that were not useful. In this sense, counter
models successfully used to curtail parts of the search space (as used in [DP97]) have to
be classified as positive experiences, since they are useful in showing that a formula is
not valid, while useless attempts at finding such a model would be classified as negative
experiences. In the terminology of learning, positive or negative experiences are often
also called positive or negative (training) examples.

Methods related to theorem proving by analogy (see above) traditionally use only posi-
tive experience (see [Fu95| and [Fu96] for exceptions). [DS96b| presents two approaches
for abstracting and generalizing from several training examples, but uses only positive
examples. It should be noted that negative examples are often essential for avoiding
over-generalization'. Approaches where positive and negative examples are used for
learning are presented in [Fu96], [SE90], [Go94], and [Go97]. While most approaches
only use examples stemming from one proof per training problem, the approaches de-
scribed in [Go94] and [Go97] use examples stemming from several different proofs per
problem.

The kind of experiences used for learning determines the way in which experiences are
extracted from successful proof attempts in order to provide training data (positive
and/or negative training examples) for learning.

A listing of all inference steps performed by a prover during a successful proof attempt
(together with their contexts) allows the retrieval of all types of positive experiences,
and also contains some negative experiences. However, not all possible negative experi-
ences can be extracted from such a listing. The set of steps that are useless for proving
a particular proof problem is, in most cases, infinite, while a single proof attempt can
only cover a finite number of steps. Nevertheless, the number of useless (negative)
steps performed in a successful proof attempt is, in most cases, extremely large. Thus
it is not practical to directly use a complete listing of all inference steps for learning.
Therefore, one normally restricts the set of negative steps to those that are close to
positive ones in the sense that only negative steps requiring at most a given number of
other negative steps as preconditions are considered.

Such (restricted) listings of inference steps can be regarded as finite initial parts of the
search space of the automated deduction system for the respective training or source
problem. [Fu95| and [Fu96] document their use in learning for DISCOUNT.

In [Go94] and [Go97], in continuation of [SE90], such listings are used to train neural
networks which implement a control heuristic for the theorem prover SETHEO. How-
ever, the listings used in [Go94], and [G097] can contain positive examples from several
different proofs per problem. This means that representations of several different proof
attempts can be combined. It has to be noted that the user has to decide which proofs
are acceptable or desirable? (positive examples) and which parts of the search space
should be avoided (negative examples). This decision influences considerably what can

LOver-generalization in this case means that too many new situations are mistakenly taken for
positive ones in the application phase
2The decision can e.g. be based on the size of the proofs.

10

and what cannot be learned.

If a complete listing of all steps performed during a proof attempt is stripped of all
useless steps, only the proof remains. Proofs are the basic form of experience for
many of the learning provers, although, due to the different calculi used, they may
be represented very differently. Complete proofs are used in most of the learning
DISCOUNT variants (see [De+97a], [DS96b], and [Fu97c]), in [Me95], and in ABALONE
(see [MWOT7]). In [DS96b], the described system abstracts from everything but the
facts occurring in any proof known to the system, but nevertheless proofs form the
input to the learning algorithm.

Instead of using all steps that contributed to a proof for learning, the goal that has
been proven together with the axioms (and perhaps a few additional lemmata) that
have been needed in the proof are used in [KW94], [KW95], and [KW96.

As we have seen, quite a large number of solutions exist even for the initial problem
of selecting possible input sources for learning. We will see in the following sections
that the particular solution chosen for this problem has some influence on the other
fundamental problems.

3.2 What to Learn?

In this section, we discuss the question of “What to learn?”, that is the question of
the goal of learning. We distinguish three major degrees of generality of the knowledge
captured by learning:

e Specific knowledge about individual problems.
e Knowledge about domains or specifications.

e General knowledge about calculus and proof procedure.

Human experts often use analogies for solving new problems. In this case, very specific
knowledge about the solution for one problem is transferred to a new problem. Domain
knowledge is also often used consciously by human beings. An example is a rule like
“r? = (—x)? is a central lemma in many proofs’. Domain knowledge is specific to
certain domains. However, as many domains of interest to humans share common

traits, parts of this knowledge apply to many different domains.

The third kind of knowledge, knowledge about properties of the proof process, is of-
ten used only subconsciously by humans. Examples for knowledge of this kind is e.g.
“Prefer facts with small terms” or “Overlap only maximal terms”. For human math-
ematicians, analog knowledge would be something like “always factor polynomials’ or
“always compute normal forms for all fractions”. This knowledge is usually not spe-
cific to a given domain, but to a given calculus. It may, however, be specific to a given
problem class (that may or may not correspond to a domain of interest).

11

As we have already pointed out on page 7, learning in automated theorem provers takes
place either on the calculus level or on the control level. This results in the following
possibilities.

e Learning on the calculus level:

— lemmata

— proof schemata or meta inference rules
e Learning on the control level:

— proof plans

— control strategies or control heuristics

On both levels knowledge of all three degrees of generality can be learned.

Since theorem provers based on generating calculi produce new knowledge, such as
clauses and equations, during a normal proof attempt, it can be argued that they
already perform some kind of learning on the calculus level (they learn about new,
valid facts). This also holds for lemma mechanisms in analytical calculi. However, in
both cases the generated knowledge is used only during the proof attempt in which it
is generated. It is not used for solving other problems.

In the late 80’s, EBL/EBG (ezplanation based learning / explanation based generaliza-
tion) (see [Mi+86] and [DM86]) was very popular for logic-based symbolic reasoning
systems. Stated in terms of theorem proving, EBL/EBG is a sophisticated lemma
mechanism. For theorem proving, the related concept of reusing proofs [KW94| has
been introduced. A goal (conjecture) that has been proven together with the axioms
(and perhaps a few additional lemmata) that have been needed in the proof are gen-
eralized (using second-order generalization, see Section 3.4.1) and stored in a so called
proof shell. This can be seen as learning of a proof schema or meta inference rule.

The benefit of learning on the calculus level, i.e. the advantage of storing lemmata or
proof schemata, is that their application yields a result (e.g. a proof for a subproblem)
while avoiding the search needed for their deduction. An uncontrolled application of
such mechanisms, however, leads to numerous new (and very specialized) lemmata or
rules, and a tremendous increase of redundancies. It contradicts the fundamental inten-
tion of deduction, which is to store general knowledge and to derive answers for special
cases, because it more or less leads to storing many special cases and reformulations
of the domain theory (see also the discussion on memorization and symbolic repre-
sentations in Sections 3.3 and 3.4). Indeed, in many cases performance can degrade.
Examples and a theoretical analysis for the case of EBL/EBG can be found in [Mi90].
Mechanisms for identifying important lemmata, such as those recently developed in
[Fu97d] or [Dr98a, Dr98b], could provide some help. However, in order to actually
improve efficiency, learning on the calculus level has to be combined with learning on
the control level.

12

Using analogy in theorem proving (see [Br+88] and [Me95]) is an example for learning
on the control level. The goal in analogy is to extract a kind of generalized proof
plan from the proof used for learning (source problem). Analogy does not reuse the
final result of a proof for proving a new problem like the approach of [KW94] does.
Instead, it tries to construct a proof for a new problem, guided by the decisions taken to
construct the proof for the source problem (see Sections 3.3.3 and 3.6). Thus, analogy
is a more flexible way of reusing proofs. If the exact correspondence between source
and target proof breaks down, analogy-based proof processes can resort to various
patching strategies like skipping or repeating individual steps, changing their order,
or carefully introducing new steps. However, analogy suffers from similar problems
as lemma mechanisms: Uncontrolled generation of proof plans can lead to partially
overlapping plans and thus introduces redundancies into the proof search.

For theorem provers based on generating calculi, learning on the control level often takes
the form of learning some kind of heuristic evaluation function for the new facts that
are generated during the proof process. Such evaluation functions compute numerical
ratings which are used to determine the order in which facts are used for further
applications of inference rules. Examples are the learning DISCOUNT variants, which
are described in [Fu95], [Fu96|, and [DS96b]. In these cases, the contert, (i.e. axioms
and the goal that has to be proven), is not taken into account by the evaluation
functions, since the facts are evaluated individually. Instead, the context is used for the
detection of applicable knowledge, that is for the selection of one of multiple heuristic
evaluation functions or the selection of training problems, as described in Sections 3.3
and 3.5.

For systems based on analytical calculi, the situation is rather different. In case of
model-elimination or SLD-resolution (PROLOG), for example, the number of available
input clauses (and hence the maximum number of possible inference steps in each state)
is fixed®. Thus, an evaluation of individual input clauses is insufficient. At least part
of the context in which the input clauses are to be applied, e.g. some features of the
current tableau, has to be taken into account by the heuristic evaluation functions. Such
a tableau, which represents the current proof attempt, is a possibly quite complex tree
of literals. Its root usually is the goal that has to be proven. The heuristic evaluation
functions learned by the learning SETHEO variants (see [SE90] and [Go94]) evaluate
input clauses together with a very coarse description of the current SETHEO tableau.
In [Go97] the whole tableau itself is evaluated. This results in learning a heuristic
evaluation function for whole proof attempts or proof structures.

Learning on the control level, either of domain-specific knowledge or even of general
knowledge about the calculus, can also be regarded as learning of some kind of search
strateqy or calculus refinement. Examples for very successful refinements, which were
found by humans, are the various refinements of resolution such as hyper-resolution,
linear resolution, and input resolution, or the restriction of paramodulation to maximal
terms. The nature of such strategies and refinements is that they eliminate redundan-
cies while still guaranteeing completeness at least for special problem classes. This

3Reduction steps in case of model-elimination are a rare exception to this.

13

means that some solutions (proofs) of problems may be lost, but at least one proof
for every provable problem remains possible. The primary goal of learning in [Go97]
are such class- or domain-specific strategies and calculus refinements. This is achieved
by providing experiences from several proofs for each training problem. The learning
algorithm has the possibility (freedom) to concentrate on some solutions while sacri-
ficing others if this helps to distinguish a minimum of “good” situations (leading to at
least one proof) from “bad” ones, that is if it helps to keep the heuristic evaluation
function simple.

So, the question of what to learn is in almost all cases connected with the control of
the theorem prover. However, the aspects of the control that are influenced by the
learned knowledge are very different. This variety is also demonstrated by the many
possibilities known for representing and storing learned knowledge.

3.3 How to Represent and Store the Learned Knowledge?
In this section, we examine how learning theorem provers represent and store the

learned knowledge. We will analyze the possible knowledge representations according
to the following criteria:

e Representational power (abstraction, generalization)

Storage space requirements

Understandability

Cost of retrieval

Availability of learning methods

Cost of learning and maintenance/updating

We will now discuss these criteria briefly. Obviously, one of the most important char-
acteristics of a knowledge representation scheme is its representational power, i.e. what
can and what cannot be represented. Consider, as an example, the problem of rep-
resenting terms. The set of terms over a finite signature is, of course, infinite except
for trivial cases. Consequently, a fixed number of finite attributes cannot uniquely
represent all these terms, and any such representation has to abstract from certain
properties of the terms. However, the ability to uniquely represent all possible inputs
is not necessarily important for a given learning task. Learning involves abstraction
and generalization. The more important question is, therefore, which concepts or prop-
erties of the input can be represented. Unfortunately, up to now there is only very
limited knowledge about which properties are important for representing knowledge to
guide theorem provers. Therefore, a high representational power is desirable, as it is
more likely to allow the description of relevant concepts.

14

High representational power may also allow a more compact knowledge representation,
as it may allow the learning system to abstract from individual examples in favor of a
compact hypothesis. However, more powerful representation schemes also allow for a
much wider set of hypotheses, and thus lead to a very serious increase in the difficulty
of finding good ones.

Besides representational power, understandability is a second important property, since
most users and developers want to be able to understand what has been learned and to
profit from this knowledge. Symbolic and explicit representations (e.g. enumerations
of finite sets of facts) are easier to analyze as e.g. numerical values as found in a neural
net.

The next important topic in discussing knowledge representation is the cost of retriev-
ing relevant pieces of knowledge. Questions concerning retrieval are also discussed in
Sections 3.5, 3.6, and 3.7. However, the representation of the learned knowledge can
influence the cost of retrieval considerably. For an unsuitable representation or inef-
ficient implementation, retrieval cost can become the dominating factor in the proof
process, and can thus reverse any progress achieved in the proof search. In addition
to the basic representation scheme, proper organization of the learned knowledge in a
data base (or knowledge base), can help to reduce retrieval cost. We distinguish three
different degrees of such additional organization of learned knowledge.

e Flat storage, i.e. unstructured knowledge
e Organization by proof

e Organization by hierarchical classes

Additional organization of the knowledge base is particularly important for learning
approaches which refrain from strong generalization and abstraction, and hence store
individual training examples or knowledge about individual training problems sepa-
rately. For such learning approaches the knowledge base grows continuously with the
number of examples or problems, and retrieval can become very expensive.

Learning approaches which are capable of generalizing and abstracting from several
examples do a lot of organization during learning themselves. This holds especially if
generalization and abstraction from examples stemming from several problems takes
place and domain-specific knowledge or even general knowledge about the calculus is
learned. In such cases additional organization of the learned knowledge is often not
necessary. See e.g. [SE90], [Fu95], [Go94], and [Go97]. However, in case of domain-
specific knowledge additional organization according to different problem domains is
useful in order to have a fully automated system.

The second kind of organization, storing knowledge by proof, is mainly implemented
by learning theorem provers based on analogy ([Me95] and [Fu97c|) or reuse [KW96].

The last basic approach, organization by hierarchical classes, actually covers a large
spectrum of possible realizations. Knowledge can be organized in classes distinguished

15

by certain aspects. These aspects can include quite complex ones, like the axioma-
tization, the signature, or the conjecture of a given proof problem (see [DS96b] and
[De+97b]), or they can be based on simpler properties, like the number of function
symbols or axioms or even the growth characteristics of the search space (see [Fu96/,
[Fu97a], and [FF97a]). Hierarchies of classes can be built by moving from more general
to more specific cases, particularly for complex aspects like axiomatization or signature,
or by considering different properties in a given order. Recent versions of the WALD-
MEISTER system [Hi+97, Hi+99] use such (hand-coded) representations to select good
search strategies for a given domain.

As we stated above, more powerful knowledge representations usually make learning
more difficult, as they allow for a wider range of hypotheses. Many learning algorithms
generate only hypotheses from a very limited set. Therefore it is desirable to match
the power of the learning algorithm with that of the selected knowledge representation
scheme. For many powerful knowledge representation schemes, appropriate learning
methods are currently not available. On the other hand, for a lot of approaches for
learning theorem provers, it was the availability of a particular learning method that
determined the choice of a knowledge representation. We will discuss the various
learning methods that have been used so far in Section 3.4.

Finally, the cost of learning and the cost for maintaining and updating the learned
knowledge have to be considered. Obviously, these costs depend on the learning method
that is used. However, the knowledge representation already determines the cost of
learning to some degree. Knowledge representations which allow a lot of abstraction
and generalization naturally require a lot of resources for learning, since suitable gen-
eralizations and abstractions have to be found. Moreover, as the resulting compact
hypotheses are usually based on many training examples, revising them becomes hard.
Normally, a complete restructuring of an already existing knowledge base is required in
order to incorporate new training examples, at least if these new examples contradict
what has been learned before. On the other hand, for knowledge representations which
perform little generalization and abstraction, learning usually is relatively cheap. Es-
pecially if variants of memorization (see Section 3.4.1) are applied and every (training)
example is stored separately, the incorporation of new examples is very cheap.

One should keep in mind that minimizing the cost of retrieving learned knowledge is
essential for the success of a learning theorem prover, as this step is performed for
each new proof problem and possibly even for each decision during the search process.
The cost for learning is less important, as knowledge learned once can be applied for
a large number of new problems. However, the cost of learning still plays a major role
in testing and benchmarking learning systems.

We now analyze the knowledge representations that so far have been used for learn-
ing theorem provers with respect to the criteria discussed above. We distinguish
three different classes of knowledge representations: symbolic representations, hybrid
symbolic/numeric representations, and numerical representations.

16

3.3.1 Symbolic Representations

Symbolic representations are attractive because they can easily handle the recursive,
arbitrary sized objects typical for most theorem proving situations. Furthermore, sym-
bolic representations can easily be understood and handled by humans. Symbolic
representations — especially if they allow the introduction (invention) of new predi-
cates (concepts) that have not been defined by the user — are very powerful. However,
efficient learning methods for general symbolic representations do not yet exist. In-
ductive logic programming (see e.g. [MR94]) provides some very first answers to this
problem, but the learning methods proposed there have not been used for learning the-
orem provers so far, and are usually not very well suited for dealing with approximative
and probabilistic knowledge.

The symbolic representations prevalent in learning theorem provers allow only limited
generalization and abstraction. So far there have been no attempts at generalizing and
abstracting from multiple training examples (problems) or for identifying characteris-
tics which are common to several training examples (problems). Typically, variants
of memorization are applied and therefore large amounts of data are accumulated.
Because of this accumulative nature, and because of possibly conflicting information
about a given proof situation, the application of the learned knowledge often requires
a complex search process of its own (see Sections 3.5, 3.6, and 3.7).

Most approaches for learning in theorem proving which are related to analogy use
symbolic representations. Traditionally (see [KI71] or [Br+88|), proofs are stored as
sequence of inference steps allowing the deduction of a goal from the axioms. No gen-
eralization is performed during learning. However, generalization takes place when the
learned knowledge is applied. Symbols of the source problem are mapped to symbols
of the target problem, and with the help of this symbol mapping, proof steps of the
source proof are transferred to the target proof. The necessary symbol mapping is
often provided by the user.

The work on analogy which is described in [Me95] and [MW97] is inspired by ear-
lier work done in the field of planning. Single inference steps are generalized to proof
schemata and extended to methods which are complex, frame-like structures. They
contain meta-level information, such as pre- and postconditions and justifications,
which has to be specified by the user. Instead of storing a proof as sequence of in-
ference steps, a so called proof-plan consisting of methods is stored. Proof-plans are
stored in a proof dictionary (a list of proofs, possibly with efficient indexing methods),
and are usually accessed by trying to find (restricted) second-order matches between
conjecture and the axioms of the current proof task and recorded previous proofs. No
abstraction or generalization takes place during learning. Instead, certain forms of
abstraction, generalization, and reformulation, which are predefined by the user, occur
when the learned knowledge is applied (see Section 3.6). Similar work on proof-plans
and analogy can be found in [Si86] and [Bu88|.

Flexible re-enactment, which is described in [Fu96|, [Fu97b|, and [Fu97c| and which

17

has been used for the systems DisScouNT and CoDE?, is also based on the use of
analogy. Instead of storing complex proof-plans, the proof is abstracted into the set
of facts contributing to the proof. Knowledge retrieval is performed by searching in
the knowledge base for the most similar case with respect to a suitable similarity
measure (see Section 3.9). Abstraction on the level of facts is not performed, however,
generalization to different signatures is performed by computing symbol mappings when
the knowledge is applied.

In the PLAGIATOR system (see [KW94], [KW95], and [KW96]), the stored proof shell is
a second-order generalization of a proof, i.e. a pattern or schema describing the conjec-
ture and all necessary preconditions for the original proof (see also Section 3.4.1). For
retrieval, the conjecture of a new problem is matched against the schematic conjecture
of a proof shell (see 3.5). Proof shells are collected in a flat proof dictionary.

So, symbolic representations are usually chosen for learning proof systems that focus
very much on the application of learned knowledge, while not putting much effort
into the learning phase. As we will see in the following subsections, the more the
representation shifts to non-symbolic ones the more the focus wanders to the learning
phase.

3.3.2 Hybrid Symbolic/Numerical Representations

Hybrid symbolic/numerical representations such as annotated term patterns (see [DS96b]
and [De+97b]) and term space maps (see [DS96b, SB99]) have been implemented for

the learning variants of DISCOUNT. They are used to learn heuristic evaluation func-

tions for equations. Both approaches currently use similar knowledge representation

schemes. Instead of storing positive facts like flexible reenactment, sets of annotated
term patterns are stored. Term patterns are generated from a fact by substituting

function symbols in a fact (equation) with second-order arity-preserving variables, thus

abstracting from the signature.

Annotations contain simple information about the role of a fact in the proof, e.g. the
number of applications or distance from the final proof state (in inferences performed).
In this way, these hybrid symbolic/numeric representations try to overcome the lim-
itations of purely symbolic representations by compiling information from different
(training) examples into a single numeric rating of the term pattern. Note that signa-
ture information is dropped and facts from different source proofs are no longer dis-
tinguished. Annotated patterns are kept in a data base organized for efficient retrieval
and evaluation. The patterns can be indexed by the conjecture or the axiomatization
of the proof problem they occurred in. If this index is used for retrieval, term patterns
can be partially instantiated during the retrieval. However, good results have been
reported even for totally flat knowledge bases.

Term patterns and term space maps are clearly more powerful representations than
those used e.g. for flexible re-enactment. Therefore, space requirements are reduced
considerably. However, there are also clear limitations to their representational power.

4CoDE is a special prover for condensed detachment problems. It is based on a generating calculus.

18

For example the concepts ‘occurrence of a specific subterm’ or ‘occurrence of a specific
unification pattern’ cannot be represented. Term patterns and term space maps are
still relatively easy to interpret and understand for humans. As long as the values of
annotations can be computed efficiently, learning times are very short, and incremental
learning (updating the knowledge base with knowledge from new training examples)
is usually easy. Retrieving the learned knowledge can be done by a single scan of the
knowledge base (which is usually organized as an index tree), and no backtracking or
patching is required.

3.3.3 Numeric Representations

In many approaches for learning theorem provers, numeric representations are used
to learn heuristic evaluation functions for alternatives in proof situations. Numeric
knowledge representations encode knowledge as a fixed-size set of numeric parameters,
organized as tuples or matrices. These values are usually interpreted as parameters for
a functional model, i.e. a function specified by the additional parameters which have
to be adapted during the learning phase.

Numeric representations are attractive for the following three reasons. Firstly, nu-
meric knowledge representations are very suitable to express the uncertain and inexact
knowledge typical for heuristic evaluation functions. Secondly, there exists a lot of
knowledge about concepts of distance and similarity for numeric representation (see
also Section 3.9). Finally, there are a lot of well-understood and powerful learning
methods from the field of statistics and numeric optimization (see Section 3.4.3), which
can deal with numeric representations. Since these learning methods abstract and gen-
eralize based on sets of training examples, they can usually discover more compact and
more general concepts than most symbolic learning algorithms. Learned knowledge is
represented by a single, very compact collection of numeric values, compared to the
mentioned tendency of many symbolic knowledge representations to grow monotoni-
cally with the addition of new examples. This compact representation also leads to an
efficient application of knowledge — typically, no search or selection is needed in the
application phase.

These advantages, however, are set off by some disadvantages. Numeric learning algo-
rithms usually optimize the parameters of functional models which map one numeric
representation to another one. Before being able to apply a numeric learning algorithm
for learning heuristic evaluation functions, we therefore have to transform their input
into a numeric representation. Knowledge about proof processes typically needs to deal
with proof states, i.e. with recursively defined objects like first-order terms or even more
complex structures (clauses, sets of clauses, tableaux) incorporating terms. The size
of these structures cannot be predicted a priori. Therefore, there is no straightforward
way of using numeric representations (usually fized-length tuples of numeric values) to
represent logical terms or clauses without loss of information. The traditional way for
transforming such structures into numeric representations works by selecting certain
features. A feature in this case is an easily computable abstraction of a formula, such
as the number of symbols, its depth as a tree, or the number of variables. Most features

19

used in automated theorem proving are numeric, that is, the possible feature values are
(real or natural) numbers. Boolean features also occur, but can be easily mapped onto
numbers as well. Given a set of features, a formula can be represented by its feature
vector, a vector of feature values (in a given order).

However, the definition and selection of features already introduces a very strong bias
and severely limits the class of functions and relations that can be expressed or learned
for the respective domain of formulae. The reason for this is that aspects of the
formulae which are important for the learning task may be either completely lost
during the transition to the feature-representation, or may become very difficult to
extract from it. Usually, very little or nothing about important features for heuristic
evaluation functions is known in advance, and therefore the selection of features is based
on secondary considerations like ease of computation, or the “hunches” of developers.
The resulting loss of potentially important information is a severe disadvantage shared
by all feature-based approaches for learning in theorem proving. The representational
power of feature-based approaches is further restricted by the chosen functional model.
Recent approaches, e.g. folding architecture networks (see below) manage to overcome
these problems to a large degree.

A major disadvantage of all numeric knowledge representations is that the learning
process is usually quite expensive in terms of processing time. While symbolic learning
algorithms are often able to construct a hypothesis from the examples, learning for
numeric representations most often involves a search for good parameters in a multi-
dimensional space. This also means that the algorithms are usually not incremental,
i.e. additional training examples usually require a complete re-learning. The fact
that training examples are only used to guide a search process instead of being used
directly in the construction of a hypothesis, as well as the fact that numeric knowledge
representations are very compact, also mean that the learned knowledge is very hard
to interpret for humans. The effect of individual training examples is usually small,
and not at all obvious in the final representation.

Numeric knowledge representations are applied in the systems described in [SE90] and
[Go94]. In both cases, proof situations are described by feature vectors, and standard
multi-layer perceptrons [Ru+86] trained with the error back-propagation algorithm (see
Section 3.4.3) are used as functional model. Three-layer perceptrons are capable of
approximating any function from one finite-dimensional real vector space to another
with arbitrary precision (see [Cy89] and [Ho+89]). Thus, the choice of the functional
model does not limit the representational power here (although learning method and
feature selection still do). A more traditional but less powerful computational model,
linear polynomials of the feature vectors’ components, is used in [SF71] and [CL73],
pp. 154ff. Learning is of course easier than in case of multi-layer perceptrons.

The approach described in [Fu95] is based on the concept of a weight function for terms
or formulae. Weight functions are used in many theorem provers, e.g. in DISCOUNT
and OTTER, to measure the complexity of terms and formulae. In general, simple
formulae, that is formulae with small weight, are preferred. A weight function can
be seen as a special kind of heuristic evaluation function. The weight of a term is

20

recursively defined as the weight of the top symbol plus a linear combination of the
weights of the subterms. Free parameters, which are usually determined by the user, are
the weights for the symbols of the respective signature, a special weight for variables,
and the symbol-specific coefficients for linearly combining the weights of the subterms
of a function or predicate symbol. The goal in [Fu95] is to learn good parameters for
a weight function. Obviously, there are clear limitations to the representational power
of weight functions.

Features can be used in direct ways to realize a heuristic evaluation function. A recent
approach for the theorem prover DISCOUNT is described in [Fu96]. Given k features
fi,--+, fx, let V; denote the set of permissible feature values, i.e. the set of all feature
values of positive steps (w.r.t. a feature f;). Given a possible future step — which
has to be assessed by a heuristic evaluation function — the minimal distance A; =
min({|v; — v| : v € V;}) of its feature value v; and the permissible feature values w.r.t.
feature f; is computed. The deviations Aq,..., Ay are added up using coefficients
c1,...,cr giving a global penalty Y% | ¢;A;. This penalty is used to modify one of
DiscounT’s standard weight functions. Learning this kind of heuristic evaluation
functions is rather straight-forward (see Section 3.4.3) and can be done rather efficiently.
However, the representational power is rather limited, and many concepts on feature
vectors cannot be represented in this way. It is for example impossible to capture
concepts based on combinations of values for different features.

In [G097], folding architecture networks (see also [GK96] and [KG96]) are used for learn-
ing heuristic evaluation functions for the theorem prover SETHEO. Folding architecture
networks are a relatively new neural network architecture for the processing of recursive
structures such as labeled, ordered trees or DAGs (directed acyclic graphs), and hence
can directly process logical terms and formulae. Folding architecture networks are a
recursive generalization of both standard feed-forward multi-layer perceptrons and dis-
crete time recurrent networks. They consist of two standard feed-forward multi-layer
perceptrons: an encoder network which is recursively unfolded to encode (compress)
a given structure (labeled tree, DAG or term), starting at the leaves, and a transfor-
mation network which computes the output for the compressed representation of an
input object.

In contrast to standard neural network approaches, features for representing terms or
formulae are not needed. The user’s or developer’s task is reduced to assigning labels
(fixed-length vectors of reals) to all symbols from the respective signature, with exper-
imental results indicating good results for most obvious encoding labels (i.e. one out
of n or a binary representation with a Hamming distance of 1). Folding architecture
networks can be trained with an extension of the back-propagation algorithm called
back-propagation through structure (Section 3.4.3). This learning method determines
optimal weights not only for the transformation network but also for the encoder net-
work. This means that encoding and transformation are combined into a single process.
The encoding is optimized exclusively for the learning task at hand. Features that are
relevant for the learning task are detected automatically.

It has been proven that any function from the domain of labeled ordered trees to

21

vectors of real numbers can be approximated with arbitrary precision by a folding
architecture network (see [Ha96] and [HS97]). Furthermore, it has been shown that for
any bottom-up tree automaton there is a folding architecture network which simulates
it (see [Kii98]). Note that e.g. arbitrary weight functions (as described above) can be
computed by folding architecture networks.

As has been pointed out several times in this section, there are close connections
between the representation used for learned knowledge and the method used to acquire
this knowledge. Therefore, the following section on the concrete learning methods will
have a similar structure as this section. Note however, that there are different learning
methods that work on the same representations, and different representations to which
multiple different learning methods can be applied. So, separating the two problems —
as we have done — is necessary.

3.4 What Learning Method to Use?

In the preceding section, we have compared different ways for representing what is
learned from previous proof experience. A crucial requirement for any useful represen-
tation scheme is the existence of a learning method, that is a procedure or algorithm
which analyzes the (training) example(s), extracts the relevant information, and brings
this information into a compact form suitable for the representation scheme. In anal-
ogy to the three different knowledge representation schemes, there exist three main
classes of learning algorithms: memorization-based approaches, example compilation
techniques, and numeric optimization procedures.

3.4.1 Memorization-Based Approaches

As already mentioned in Section 3.3, memorization of examples (often after some ab-
straction or generalization) is the predominant learning method in case of symbolic
representations. Hybrid symbolic/numeric techniques compile large numbers of exam-
ples into a single, compact data structure while numeric learning algorithms achieve
even more compact hypotheses by optimizing parameters of a functional model.

The variants of memorization that are used by learning theorem provers differ mainly
with respect to the degree of abstraction and generalization that is performed during
learning. Memorization in its pure form means learning by heart, that is every training
example is stored separately with almost no generalization or abstraction taking place.
The only step of abstraction that is performed is the selection of which parts of a
proof search are stored (see also Section 3.2 and Section 3.3). Storing a separate
entry for every example leads to continuously growing data bases. Pure memorization
can e.g. be found in learning provers using analogy, particularly those inspired by
derivational analogy (see [Ca86] or [CV88]). Two examples are detailed in [Me95],
[MW97] (on the level of proof plans) and [Fu96], [Fu97b], respectively. In the first case,
complete proof plans are memorized and their decision sequence is replayed during the
application phase. This application phase allows various patching strategies if complete

22

correspondence between the stored proof and the one for the new problem breaks down.
In the second case, proofs are represented as sets of (relevant) facts, thus abstracting
from the order in which they are generated. During application, facts similar to those
in the source proof are preferred.

Systems using ezplanation-based learning (see [Mi+86] or [DM86]) and related tech-
niques perform more work in the learning phase than systems relying on pure memo-
rization. The basic idea of this learning approach is to analyze an existing proof and to
generalize it by computing the weakest possible precondition necessary for the success of
the proof, e.g. to drop unnecessary axioms and to abstract from instantiations enforced
by the conjecture only, while still ensuring that the remaining preconditions logically
imply the (generalized) goal. For theorem proving, the related concept of reusing proofs
(see [KW94], [KW95], and [KW96]) has been introduced. In this case, the first-order
generalization of the proof is restricted to finding the necessary case-specific axioms and
omitting details about the application of the axioms. On the resulting proof catch a
second-order generalization is performed, by substituting function symbols with func-
tion variables, where independent occurrences of the same function symbol can be
substituted by different variables. The final result of the learning process is a proof
shell, a pattern describing the conjecture and necessary preconditions of the original
proof.

In many of the learning provers using memorization at the level of proofs, most of the
abstraction and generalization is done during the application of learned knowledge (see
Section 3.6), not during the learning phase. The application phase for a new problem
can be split into two parts: finding the most similar case in the proof dictionary (see
Section 3.5), and making the learned knowledge found there applicable for the new
proof problem (see Section 3.6). Therefore, many approaches using memorization can
be seen as a form of Case-Based Reasoning/Learning (CBR, see e.g. [K092]).

[Fu97al describes a purely case-based approach, using features to characterize proof
problems and the nearest neighbor method to retrieve information about which out of a
fixed set of strategies is likely to perform well on a new problem (see also Section 3.5 and
Section 3.9). [FF97b] and [FF97c| explicitly apply CBR to learning theorem provers.

3.4.2 Example Compilation Techniques

Learning by pattern memorization (see [DS96b] and [De+97b]) is a borderline case
between symbolic and hybrid learning algorithms. In this approach, information from
several facts (equations), which may even originate from proof searches for multiple
different problems, can be compiled into the annotations of a single representative term
pattern. Memorization is performed on the level of facts, not on the level of proofs. The
basic learning algorithm for learning by pattern memorization starts with analyzing the
listing of inferences to determine the set of facts actually leading to the proof®. For
these facts, it then calculates some relevant properties (distance from the goal, number

SWork on the use of negative examples is reported as “in progress”, a first prototype has been
presented at the CASC-14 ATP system competition [SS97b].

23

of applications in the proof). The facts are then individually generalized into a term
pattern by consistently substituting function symbols with function variables, and the
properties are added as annotations. The resulting pattern is stored in a data base
indexed for efficient retrieval. If multiple copies of the same term pattern are inserted
into this data base, their annotations are combined.

Variants of the basic algorithm maintain a separate data base for each (generalized)
axiomatization and each (generalized) goal, and substitute function symbols occurring
in the axioms or the goal consistently throughout the data base. The result of the
learning process is always a set of term patterns with abstract information about the
usage of the original facts. These annotated term patterns can be used directly to
evaluate facts with equivalent patterns during future proof searches.

Learning by term space mapping is an example for a compilation-based hybrid learning
algorithm. A term space map maps (a finite subset of) the space of possible term
nodes to evaluations of these nodes. The learning algorithm starts out with annotated
patterns of facts derived from proofs as described for the previous approach. It con-
structs a recursive structure (a term evaluation tree or term space map) describing all
growth alternatives® for these terms, starting at the root. For each node, an evaluation
is computed from the properties of the patterns containing this node. The final term
space map is then used to compute heuristic evaluations for new terms by collecting
the annotations of nodes of the term space map corresponding to nodes in the term
that has to be evaluated.

3.4.3 Numeric Optimization Procedures

The existence of powerful numeric optimization procedures is one of the main reasons
why numeric representations have been considered for learning theorem provers. As
already pointed out in Section 3.3.3, learning in this context means finding an approx-
imation to an unknown target function (i.e. a heuristic evaluation function), which in
most cases is a mapping from one tuple space of numeric values to another’. Train-
ing data for this kind of learning consists of a finite sample, that is a finite number
of training examples (pairs of possible input tuples with the respective target output
tuples). A further precondition for the application of numeric optimization procedures
for learning is the selection of a functional model with free numeric parameters, and
with the same domain and range as the function which has to be learned.

Applying a numeric optimization procedure further requires a cost function, or an error-
or fitness measure. Such measures compare the target function to the function which
is actually computed by the functional model with the current set of parameters. Since
the target function is only known for the training sample, this comparison can only be
done with respect to the training sample. An error measure of zero normally indicates
that the model is perfectly adapted to the target function. However, this does not

6Currently published approaches only distinguish between function symbols of different arities, but
other abstractions are possible and outlined as future work.

"In most cases the output is only a single value, interpreted as an evaluation of a fact or proof
situation.

24

necessarily mean a low generalization error, that is a small expected error of the trained
model with respect to new input. The trained model may be over-fitted to the training
sample. Fortunately, for many functional models the following can be guaranteed: the
bigger the size of the training sample, the higher the correspondence between the error
on the training set and the generalization error. The exact relationship depends on the
diversity of the functional model. See e.g. [Va95] for a theoretical foundation.

Learning with a numeric optimization procedure means finding parameters for the
chosen functional model which minimize the error measure. Note that an error measure
enables the examination of a parameter set and the corresponding heuristic evaluation
function without actually testing it on the proof system (which usually would be far
too expensive). In order to understand the following, the reader should keep in mind
that the size of the training sample, that is the size of the finite initial part of the
search space which generated the training sample (see Section 3.1), is usually very
small compared to the search space that is explored by a theorem prover when solving
the corresponding proof problem without heuristic guidance. Therefore, if the search
guided by a heuristic evaluation function remains within this finite initial part and
allows to find at least one of the proofs “contained” in it, such a heuristic evaluation
function is regarded as perfect and an error of zero should be assigned to it.

In most approaches, standard error measures such as the mean squared error are used
for learning heuristic evaluation functions. A general assumption for standard error
measures is that the target values of individual training examples are independent of
each other. Unfortunately, this is not true in case of training examples for a heuristic
evaluation function. An error measure should e.g. disregard the rating of a heuristic
evaluation function for a negative training example NV if the heuristic evaluation func-
tion already assigns a bad rating to the predecessor of N in the search space (search
tree). The reason for this is that the search process, if guided by this evaluation func-
tion, would never explore the state corresponding to N. Similar dependencies exist
between positive training examples. Furthermore, it seems reasonable to use relative
target values instead of absolute ones. For an analysis and a more adequate error
measure for learning heuristic evaluation functions see [Go97].

It can be reasonable to occasionally refine the training sample by a new test run
with the proof system (as suggested in [Fu95|). If e.g. at some point during learning
the optimization procedure is not able to produce further improvement, this might
be caused by the finite initial part of the search space that was selected to provide
training data. Perhaps a simple heuristic with zero-error with respect to the sample
does not exist. However, another finite initial part of the search space containing new
proofs could perhaps allow a simple heuristic. The heuristic evaluation function that is
computed with the currently best parameter set can be used to guide the prover and to
determine such a new finite initial part for providing training data. Such an approach
seems especially justified, if training data from several proof problems are combined
and the currently best heuristic already provides good guidance for some of these proof
problems. Since in this way better and better heuristic evaluation functions are found
the whole procedure could be called bootstrapping (see [Go97]).

25

Various numeric optimization procedures have been used for learning heuristic evalu-
ation functions for theorem provers. One of the first approaches was least square esti-
mation (see [CL73|, pp.154ff and [SF71]), applied to linear polynomials of the feature
vector components. More advanced feature-based approaches (as [SE90] or [Go94]) use
multi-layer perceptrons (neural networks) trained by the error back-propagation algo-
rithm. Multi-layer perceptrons compute continuously differentiable functions. The er-
ror back-propagation algorithm (see [We74] and [Ru+86)) is a very efficient method for
computing the gradient of the error measure® with respect to the parameters (weights)
of a multi-layer perceptron. The gradient computation has the same complexity as the
computation of the error measure itself. This is one of the reasons why multi-layer
perceptrons are so widely applied. Having a gradient to control search is certainly a
big advantage for a learning method since it gives at least locally the best direction for
improving the current hypothesis. However, gradient-based search has also disadvan-
tages. It can e.g. get stuck in local minima of the error function. Therefore, though
the function which has to be learned may be computable by the chosen network, it is
not guaranteed that learning will converge to it.

Besides multi-layer perceptrons, folding architecture networks (see [GK96] and [KG96])
have been used for learning heuristic evaluation functions for the theorem prover
SETHEO (see [Go97]). As already described in Section 3.3.3, folding architecture net-
works compute mappings from labeled trees or general DAGs to real vector spaces,
and they can be trained by an extension of the back-propagation algorithm, called
back-propagation through structure (BPTS). As in the case of standard error back-
propagation, gradient computation with BPTS has the same time complexity as the
computation of the error measure itself. The time complexity of both computations is
linear in the number of nodes in the graph-representation of the structures (e.g. logic
formulae) from the training sample. Folding architecture networks always produce
the same result for a tree- and a DAG- representation of a logical formula. There-
fore, choosing a minimal DAG-representation for the logic formulae from the training
sample can lead to an exponential reduction of the time complexity of the gradient
computation. In practice, factors between five and fifty are reported.

BPTS is a gradient descent optimization just as standard error back-propagation. In
contrast to the positive theoretical results on the representational power of folding
architecture networks (see Section 3.3.3), convergence to a solution can only be guar-
anteed for very special learning tasks. However, a couple of publications show that in
practice BPTS is a very efficient learning method: artificial term classification prob-
lems, in [GK96], [KG96], and [Sc97], predicting quantitative structure activity rela-
tionships in chemistry in [SG98], and theorem proving in [Sc+97] and [Go97].

The approach described in [Fu95] uses a genetic algorithm (see e.g. [Go69]) to optimize
the parameters of a weight function for a given proof problem. Instead of keeping
only one hypothesis and trying to constantly improve it, genetic algorithms use a set of
candidate hypotheses (called a population of individuals) that are constantly evaluated
by a fitness function. New individuals are generated by combination (crossover) or

8Note that in order to apply gradient descent techniques, continuous differentiable error measures
are needed.

26

modification (mutation) of old ones. Fitter individuals are given a higher probability
of generating new individuals, however, due to the use of random effects sometimes less
fit individuals can survive and produce new individuals as well. This makes genetic
algorithms more expensive than e.g. gradient descent. However, genetic algorithms are
usually better in handling local minima in the parameter space than gradient-based
search algorithms.

In [Fu96], a set of permissible values for each feature is used to determine a minimal
distance for each component of a feature vector and a weighted sum of these min-
imal distances determines the final output of the heuristic evaluation function (see
Section 3.3.3). Therefore, learning in this context means finding a set of permissible
values and a vector of coefficients for each feature. Suitable coefficients are determined
algorithmically using both positive and negative examples. The basic idea is to choose
the coefficients so that negative examples receive a penalty which is (much) larger than
a possible penalty of positive examples. As a consequence, positive examples will be
preferred by the heuristic which takes the penalty into account. However, the penalty
should be moderate, so that some of the negative examples — which might play the
role of positive examples for a proof problem that is rather similar to the training or
source problem — will not be delayed too long. Hence a suitable trade-off must be
found. See [Fu96] and [Fu97c] for details.

As this section has shown, many of the learning methods known in machine learning
have been also integrated in learning theorem provers. However, due to the structure
of the objects the provers deal with, theorem proving offers some challenges for these
methods. The success of a learning theorem prover does not solely depend on a good
learning method. The application of the learned knowledge and a good handling of the
problems that have to be solved for such an application is of equal importance.

3.5 How to Detect Applicable Knowledge?

The question of how to detect applicable knowledge addresses the problem of finding
those pieces of knowledge that are most likely to be useful for solving a given new
proof problem. While this is of little importance for general knowledge concerning
the calculus or the proof procedure, it becomes more important for domain-specific
knowledge and is of prime importance if problem-specific knowledge has been learned.
Of course, a method for detecting applicable knowledge strongly depends on the method
used to apply it. Detecting applicable knowledge is a crucial step in the problem-
solving process of any learning problem solver, since it provides the application phase
with the necessary input. Recent works have acknowledged the importance of detecting
applicable knowledge automatically and have produced several techniques for dealing
with this issue.

In Section 3.3, we already argued that it is profitable to organize the learned knowledge
in a knowledge- or data base, which may e.g. be organized in a hierarchical manner.
Detecting applicable knowledge then means retrieving it from such a data base using
some sort of “search key”. Since the knowledge to be retrieved is to be used to solve a

27

given problem, this very problem is the most obvious and suitable search key. There-
fore, all methods for detecting (retrieving) applicable knowledge center, in one way or
another, on comparing the problem to be solved with data base entries using some kind
of similarity measure (see also Section 3.9). Essentially, the following alternatives for
detecting applicable knowledge (within a suitably designed data base) are most widely
used:

e Requesting user input.
e (Higher-order) matching.

e Using similarity criteria.

Asking for user advice is often done implicitly, by having the user manually select a
knowledge base or a set of training problems for tuning the prover. Of course this
alternative is only acceptable in the experimental stages of research or, in some cases,
for interactive provers. (The “data base” then corresponds to the user’s experience.)
Sooner or later automated methods using matching or (general) similarity criteria and
“real” data bases are called for. The fact that most learning provers we are aware of,
except for those explicitly discussed in this section, still rely on user input shows that
we are still in a relatively early stage in the development of learning provers.

The majority of methods for detecting applicable knowledge center on matching. Cer-
tain parts of solved problems are stored in a data base and are matched against the
corresponding parts of a new problem. Given that a (proof) problem is specified by
a set of axioms and a goal to be proven, relevant parts can include the goal only, the
axioms only, or both axioms and goal.

[KW94] uses only the goal as a key to detect applicable knowledge. Found proofs (see
Section 3.2) are generalized, resulting in formulae (proof shells) substituting function
variables for function symbols. Given a new problem with a goal GG, a proof shell rep-
resents applicable knowledge if its (generalized) goal G satisfies W(G) G for some
second-order match 7. The method for applying the knowledge (see Section 3.6) jus-
tifies this kind of retrieval. Note that second-order matching allows function symbols
of different arity to match each other. For instance, the second-order term F'(zx,y)
— F being a function variable — may be instantiated as s(x) or s(y), where s is a
unary function symbol, and the second or first argument of F' is ignored. Similarly,
the second-order term S(z) may be instantiated with f(z,z).

In [DP97] a second-order matching approach is used as well, but both goal and axioms
of the new proof problem form the search key. In this case a partial solution of the
matching problem will produce a set of lemmata that have to be proven additionally.

The approach presented in [DS96b, SB99] is designed to abstract and generalize from a
huge amount of training examples stemming from different training problems. There-
fore, there is basically no need for detecting applicable knowledge. However, it does
make sense to restrict the amount of usable knowledge for various practical reasons.
Usually, the applicable (eligible) knowledge is limited to the domain (e.g. rings or

28

lattice-ordered groups) to which the problem to be solved belongs. This is reasonable
especially when domains differ substantially. Domains can be identified by examining
the set of axioms. Naturally, there are many ways to formalize the same theory, and
the problem to identify equivalent theories is undecidable. For practical use, a given
problem is classified as a member of a certain domain if all the axioms describing the
domain can be shown to hold under the axioms of the problem within a limited cal-
culus (in [DS96b], only normal forms with respect to the axioms are computed, see
also [DK96]). In order to abstract from specific names for function symbols, signa-
ture matching between the second-order variables used in the knowledge base and the
problem’s signature is performed.

Simalarity measures are the third and most general approach for detecting applicable
knowledge. They too are sometimes based on first- or second-order matching. More
generally, these measures represent “agreement” of axioms and goals of proof problems
with numeric values (see Section 3.9). These values can then be employed to define
notions like “sufficiently similar” and “more similar than”. Based on these notions,
retrieval can identify knowledge that — according to the similarity measure — appears
to be (sufficiently) applicable. Naturally, these (“quasi”) matching criteria are merely
a heuristic guideline for detecting applicable knowledge. However, often there is no
certain way to determine applicability a priori. To put it another way, the use of
similarity measures heavily relies on the assumption that similar problems (most likely)
provide applicable knowledge — an assumption that is reasonable for “appropriately
designed” similarity measures.

A similarity measure also is necessary when embedding learning theorem provers into
the framework of case-based reasoning (CBR). CBR is a well-established area of artifi-
cial intelligence that provides a general framework for analogy-based problem solving.
Storage, retrieval, adaptation, and application are the key elements of CBR. These
elements also appear in learning theorem provers. Employing CBR in order to cre-
ate largely user-independent learning theorem provers therefore appears to be quite
profitable. This hypothesis is supported by recent results (see [FF97b], [FF97c], and
[De+97al).

An approach to detecting applicable knowledge using similarity without falling back
on matching criteria is the use of features and feature vectors (Section 3.3.3, p. 19)
for describing proof problems. Similarity is defined via a distance measure on feature
vectors (usually Euclidean distance or a variant). The most similar problems (nearest
neighbors) are the ones most likely to provide applicable knowledge. This approach has
been successfully applied to selecting appropriate search-guiding heuristics for solving
a new problem (see [Fu97a]) given a data base of solved problems and the respective
heuristics that were used to solve them.

The detection of applicable knowledge only sets the stage for the application of it.
Note however that nearly all solutions presented in this section give no guarantee that
the selected knowledge really is useful. We will deal with this problem in Sections 3.7
and 3.8.

29

3.6 How to Apply Knowledge?

There are three main lines of research dealing with the application of knowledge in
connection with automated deduction:

e 'Transformational analogy.
e Derivational analogy.

e Search-control heuristics.

Naturally, there are again borderline cases and hybrids. However, all published ap-
proaches essentially revolve around these three lines of research.

Approaches based on transformational analogy employ knowledge in the form of solu-
tions (i.e., proofs). A proof of a problem solved in the past (source) is transformed
into a proof of the current problem (target) by means of an analogy mapping which is
derived by comparing source and target problem. Naturally, this transformation pro-
cess will not always succeed. Depending on the chosen analogy mapping it is possible
that the result of the transformation process is not a proof, or it is a proof, but not
the required one. The former reason for failure is the most frequent one and calls for
patching strategies to recover from and repair failures (see also Section 3.7).

The work on reusing proofs described in [KW94], [KW95], and [KW96] can be classi-
fied as transformational analogy. In Section 3.5, we already outlined that applicable
knowledge is detected using a second-order match 7 for the generalized goal G from a
proof schema and the goal G from a given new problem such that 7(G) = G. Let Az
denote the generalized axioms form the proof schema and Az the axioms for proving
G. If for every G € Ax there is a a € Az so that 7(a) = a, then G is proven by virtue of
the proof of G. (Note that it is possible that 7 (&) still contains unbound (free) function
variables, namely those which did not occur in G. In this case a further second-order
match ¢ must be found so that ¢(7(d)) = a.)

Comparing [KW94] to the general outline of transformational analogy, it is obvious
that the required analogy mapping corresponds to the second-order match 7. In the
case that there is an a € Az for every & € Az so that 7(d) = a, the abstraction
(generalization) method guarantees that we have a proof. If there are a € Az so that
there is no a € Az satisfying m(a) = a, various patching strategies [KW95] may be
applied. One may e.g. try to prove the missing 7(a) perhaps by applying another proof
schema, and the process may continue recursively (see also [KW96] and Section 3.8).
However, applying a proof schema in this way generates a search of its own. Thus
applicability becomes undecidable and has to be controlled heuristically. The success of
reusing proofs — like most approaches based on transformational analogy — critically
depends on a high degree of similarity between source and target problem.

Note that the approach essentially utilizes generalized proofs (i.e., solutions) as a kind
of (analytical) meta inference rule. The same is true for the approach of [DP97]. A
major problem for this kind of learning is that it reduces the length of a proof at the
expense of increasing the average branching factor in the search space. This effect

30

has been analyzed for ezplanation based learning in the domain of planning systems
(see [Mi90], [Et93], and Section 3.2).

Derivational analogy explicitly focuses on how a proof was found rather than the proof
itself. It employs the decisions made and the actions taken which finally led to a proof.
Thus, when trying to find a proof of a new problem, derivational analogy attempts to
make analogous decisions and take analogous actions.

In [Br+88], such an approach is described. There, the user pairs facts (axioms) of the
source problem with facts (axioms) of the target problem, if they appear to have an
analogous meaning. Then, the automated prover applies the same inferences to facts of
the target as were applied to their analogous counterparts of the source proof’. A fact
resulting from such an inference is again considered to be analogous to the correspond-
ing fact in the source proof. If the source proof no longer applies, then a “standard”
prover (i.e., a prover employing some basic heuristic) takes over. Furthermore, [Br+88]
also describes several methods to recover from breakdowns in analogy (e.g., if no “anal-
ogous” inference is applicable). The recovery mechanisms may involve backtracking,
because facts of the source often can be paired with more than one analogous fact
of the target, thus allowing the exploration of analogies in a depth-first manner (see
Section 3.7). It may also involve a conventional proof search.

Hence, the approach presented in [Br+88| has two phases. First, it attempts to exploit
a source proof by re-enacting its analogous steps in order to arrive at a target proof.
The search possibly involved in this process is different from the search the standard
prover would conduct. Second, if the source can no longer be exploited, a standard
prover that does not make use of the source in any form takes over.

In [Me95], derivational analogy is applied to inductive theorem proving. The approach
centers on proof planning using tactics and methods (see also Section 3.3.1, page 17).
A proof plan can be considered as a set of instructions on how to obtain a proof.
Naturally, during the application of a proof plan, failures can occur (e.g., a certain
tactic or method suggested by the proof plan is not applicable). To a certain extent
failures again can be compensated for by appropriate patching techniques (see also
Section 3.7) such as reformulations of proof plans. However, these patching strategies
again introduce a search process which has to be controlled heuristically.

Transformational and derivational analogy build on a deterministic knowledge transfer.
Search is avoided as much as possible and is brought into play only through patching
attempts. In contrast to this, search-control heuristics explicitly build on search for
transferring knowledge. In most cases search-control heuristics are realized by heuristic
evaluation functions (see also Section 3.2) which compute numeric ratings for alterna-
tives in the search space. These ratings can then be used to define an order on the
alternatives and thus they realize a search-control heuristic. However, they can also
be combined with existing search-control heuristics or strategies in order to improve
and refine them. The fact that search is explicitly involved leads to more flexibility.
Less similarity between training and target problems is required than in case of ana-

9[Br+88] refers to the source problem and source proof as as guiding problem and guiding proof,
respectively.

31

logical reasoning. Search-control heuristics are related to derivational analogy as both
approaches utilize information about how to find a proof. In both cases knowledge on
the control level is transferred (see also Section 3.2).

[Fu95] centers on adapting or fine tuning the parameters of a weight function for the
theorem prover DISCOUNT (see also Section 3.3.3). The resulting heuristic evaluation
function is used to evaluate possible inference steps during the proof search. The
approach described in [Fu96] and [Fu97c| yields a feature-based numeric penalty for
each possible inference (see also Section 3.3.3) of DISCOUNT. This penalty is added to
the weight which is assigned by a standard weight function and used to determine the
(probably) best inference.

Similar to the approach in [Fu95|, the neural approaches described in [SE90], [Go94],
and [Go97], as well as the numeric learning algorithms described in [SF71] and [CL73]
yield an easily applicable evaluation function, either in the form of a pre-trained neural
network or as a weight vector for a given set of features. However, in contrast to the
approaches mentioned in the last paragraph, these approaches deal with systems based
on analytical calculi. As described in Section 2, such systems perform a depth-first
iterative deepening search. Heuristic evaluation functions can be applied in two ways,
i.e. locally or globally, to guide the search process. If they are applied locally (as in
[CL73] and [SE90]), they are only used to determine an order on the possible successor
states of the current state. Applying them globally means using their ratings also for
the decision whether the system should backtrack (see [Go94] and [Go97]). The ratings
are then applied in a similar way as traditional bounds (see Section 2) to realize an
iterative deepening search.

Flexible re-enactment (see [Fu96], [Fu97b], [Fu97c|, and [De+97a]), used for the systems
DiscounT and CODE, is closely related to derivational analogy in that it attempts to
re-enact proofs by focusing on the positive facts learned from a source problem when
tackling a target problem. However, flexible re-enactment is a pure search-control
heuristic. Re-enactment is accomplished by giving preference to (re-enactable) positive
facts applying a signature mapping if necessary. In the case that there (temporarily) are
no recognizable positive facts which can be re-enacted, the search proceeds nonetheless.
Flexible re-enactment combines the idea of re-enactment, i.e., preferring positive facts,
with a “standard” heuristic, i.e., a heuristic which is in general quite profitable and
allows to conduct a reasonable search in the absence of re-enactable positive facts.
A distinctive feature of flexible re-enactment is the preference of facts that are not
positive facts themselves, but originate from positive facts. These facts have a relatively
high likelihood to contribute to a proof. The preference given to these descendants of
positive facts decreases as descendants become more and more remote w.r.t. their
ancestors which are positive steps. Flexible re-enactment can also be combined with
the feature-based approach of [Fu96].

The two approaches presented in [DS96b] exploit positive facts collected from successful
proofs of all problems belonging to a certain problem domain. The generalized and
stored abstract patterns of the data base (see Sections 3.3.2 and 3.4.2) are used in
different ways. For the first approach, learning by pattern memorization, new facts

32

are matched against the stored patterns (using an efficient data structure to minimize
the overhead). If a corresponding pattern is found, an evaluation of the pattern is
computed from the stored information, preferring facts that have often been useful in
many proofs. The evaluation may also take the current proof phase and the distance
from the goal into account. The second approach, learning by term space mapping,
compiles the pattern into a term space map. The terms on a fact to be evaluate are
mapped onto this structure, and an evaluation of the terms is computed from the
annotations stored at the nodes corresponding to nodes of the term.

While the analogy-based approaches for the application of learned knowledge have their
roots in concepts developed by the traditional Al an machine learning communities,
the use of learned knowledge in the form of search-control heuristics is a rather new
approach. Its importance in automated theorem proving and some other applications
has led to a growing interest by the machine learning community.

3.7 How to Detect and Deal with Misleading Knowledge?

Similar to the observation that in a calculus not every applicable inference rule should
be applied, one can observe that not all the learned knowledge that can be applied
in a given situation really furthers a proof attempt. Naturally, if the application of
a piece of learned knowledge always resulted in a limited number of actions that end
with either a total fail or a successful proof, the detection of misleading knowledge
would be simple and could be dealt with by backtracking and trying the next piece of
knowledge. However, in most cases, after applying a piece of knowledge, it is neither
immediately clear if it is useful for finding a proof, nor is it possible to determine at
which future time such a decision can be made. Moreover, the application of a piece
of knowledge may result in a behavior of the prover that can make it impossible (or
at least much more difficult) to find a proof, although the prover, without using this
special knowledge, would be able to find a proof (rather quickly).

The following concepts for solving this problem can be found in learning provers:

User: Interrupts and backtracking (or new run) forced by the user.

Use of time limits: If such a limit is exceeded without finding a proof another piece
of knowledge is tested. Instead of time limits, a limit on the number of inference
steps or the depth of deduction can also be used.

Conditions: Parts of the applied knowledge are conditions that should be fulfilled
after given time periods/number of steps. If they are not fulfilled another piece
of learned knowledge is tested.

Impact: The impact of the applied learned knowledge on the search process is peri-
odically tested and evaluated retrospectively. Knowledge without impact or with
negative impact is discarded.

33

The problem of misleading knowledge is well-known, and has been recognized in sev-
eral publications. For interactive provers, the problem is less severe. Since they are
under constant supervision of the human user, these systems can afford to use the
first solution, i.e. letting the user deal with misleading knowledge (see [Me95]). Fully
automated proof systems, on the other hand, cannot rely on the user in these situ-
ations. However, few systems offer satisfactory solutions. This is in part due to the
prototypical character of many systems, and in part due to the relative youth of the
field of learning theorem provers. None of the approaches detailed in [SE90], [SFT1],
[CL73], or [DP97] offer a solution, and many other approaches consider recovery only
as a secondary feature.

In [KW96] the problem is acknowledged and dealt with by defining a well-founded
ordering on proof goals that prevents an infinite number of steps of the prover (theo-
retically) after a piece of knowledge is applied. Similarly, in [Fu97a] the second solution,
use of a time limit, is employed.

In [Go94] and [Go97], the problem of having wrong ratings (computed by a heuristic
evaluation function) for search states of the theorem prover SETHEO is addressed by
a mixture of the second and the third concept. Firstly, time limits are applied by
combining the heuristic ratings with hard traditional bounds. In this way the set of
possible search states is made finite before applying heuristic ratings. Secondly, due
to using ratings globally (see also Section 3.6) a postcondition for continuing search
after a state with a good rating has been explored is that at least one of its successors
also has a good rating. Otherwise, backtracking will take place. However, it has to be
emphasized, that in this way only misleading knowledge on the level of single wrong
ratings of the applied heuristic evaluation function can be compensated. Means for
automatically dealing with totally inappropriate heuristic evaluation functions are not
proposed in [Go94] or [Go97].

The third solution concept is suggested by works in the area of proof planning, as for
example [Bu88|, [Hu+94], [SD93], or [GN97]. Although most proof planning systems
do not use knowledge learned automatically, but rather employ knowledge in form of
tactics, methods, or meta-methods provided by the user, the detection of misleading
knowledge is a crucial problem. In such systems, a tactic consists not only of the
actions the system should take, but also of preconditions that determine if a tactic
is applicable (we already discussed this concept in Section 3.5) and of postconditions
that are expected to hold after the tactic is executed. Provers using proof planning
techniques have as central structure a so-called proof tree that is the result of employing
tactics to the problems represented in the nodes of the tree. In addition to the tactic
currently believed to solve a node all tactics currently applicable to a node as well
as all tactics already tried out are stored in this tree. Part of the tactics are also
conditions that provide the control of the prover with information which of the resulting
subproblems have to be tested when. This testing is then done starting with the leaves
of the tree. Whenever problems cannot be solved within given time limits, alternatives
are tried out. Naturally, in such a context also tactics representing learned knowledge
can be included and the approaches of [KW94] and [Me95] are supposed to be integrated
into such a proof planning system.

34

Another model for the use of planning is the core of DISCOUNT’s solution to the
detection and the handling of misleading knowledge: the TEAMWORK method. The
TEAMWORK method provides the ideal environment for the application of learned
knowledge.

The TEAMWORK method is a knowledge-based distribution method for certain search
processes (see [De95]) that correspond to the search performed by generating provers.
In a TEAMWORK-based system there are four different types of agents: experts, spe-
cialists, referees, and a supervisor. Experts and specialists are the agents that work
on really solving a given problem. FEzperts form the core of a team. They are problem
solvers (i.e. theorem provers) that use the same inference mechanism, but different
selection strategies (including learned heuristics) for the next inference step to do.
Specialists can also search for a solution or they can help the supervisor, for exam-
ple by analyzing and classifying the given problem. An example is the PES specialist
described in Section 3.9. Each expert or specialist runs on its own computing node.
Therefore, the supervisor determines the subset of experts/specialists that are active
during a working period depending on the number of available processors.

The search process is organized in cycles. After each working period, a team meeting
takes place. In the judgment phase, each active expert and specialist is evaluated by
a referee. Each referee has two tasks: judging the whole work of the expert/specialist
of the last working period, and selecting outstanding results. The first task results
in a measure of success, an objective measure that allows the supervisor to compare
the experts. The second task is responsible for the cooperation of the experts and
specialists, since each selected result will be part of the common start search state of
the next working period. The referees send the results of their work to the supervisor.

In the cooperation phase the supervisor has to construct a new starting state for the
next working period, select the members of the team for this next period and determine
the length of the period. The new start state for the whole team consists of the whole
search state of the best expert enriched by the selected results of the other experts and
the specialists. The supervisor determines the next team with a reactive planning pro-
cess involving general information about components and problem domains (long-term
memory) and actual information about the performance of the components (short-term
memory). The long-term memory suggests a plan skeleton that contains several small
teams for different phases of a proof attempt. These suggested teams are reinforced
with appropriate experts/specialists (if more computing nodes are available). During
each team meeting the plan has to be updated. This means that adjustments are made
according to the actual results (see [DK96]).

The solution to the problem of detecting and dealing with misleading knowledge pro-
vided by TEAMWORK is the retrospective evaluation of experts and specialists in the
judgment phase of a team meeting and the consequences taken by the supervisor in the
cooperation phase. Experts or specialists representing or using learned knowledge are
compared with each other and with conventional search strategies. If learned knowledge
does not help in finding a proof, then the measure of success of the expert/specialist
with this knowledge either is bad or will become bad in later team meetings. If the

35

measure is already bad then the referees will also find not many or no facts to select.
Firstly this results in forgetting nearly all the consequences of the application of mis-
leading knowledge (remember that referees only select facts that have proven to be
good). Secondly, a very bad measure of success forces the supervisor to substitute the
expert /specialist by another one (perhaps representing another piece of knowledge).

If, during a team meeting, no clear conclusion about the progress of an expert or
specialist can be obtained, then at least some of its facts are good enough to be selected
by its referee. This means that its best facts are part of the start state of the next
working period so that the expert/specialist can in the next period try to prove that its
knowledge furthers the proof attempt. Since this expert/specialist will not be evaluated
as particularly bad, the supervisor will not exchange it (unless some specialists provided
totally new results that suggest a whole new direction the team should go).

So, TEAMWORK does not only allow the detection of misleading knowledge, but it also
provides a way to get rid of those facts generated by such knowledge that are indeed
useless. If, by chance, not each result of misleading knowledge is bad, then these facts
will not be forgotten (no beginning at point zero as in case of backtracking).

Note that the use of measures of success is in a competitive and therefore relative
manner: if there is no good expert then TEAMWORK tries to make the best out of a
bad situation. The other solutions to the detection problem lack any possibilities for
comparisons and therefore it is difficult to determine whether the prover does behave
good or bad at a moment.

The detection of applicable knowledge is usually only a heuristic process. It can nei-
ther guarantee that the identified pieces of knowledge are actually useful, nor that all
necessary pieces have been identified. Therefore the problem discussed in this section
is strongly related to the problems discussed in the next two sections.

3.8 How to Combine Knowledge from Different Sources?

The usage of learned knowledge almost always involves a certain amount of transfer
actions to bridge the gap between the source of the learned knowledge and the target
problem it should be applied to. This may include rather large series of actions to
establish parts missing in order to bridge the gap, and is sometimes referred to as
patching (see Section 3.6). Similarity concepts (see Section 3.9), application conditions
(see Section 3.5) and certain features of the application procedures (see Section 3.6)
already take care of small gaps between one source and a target. Gaps can also be
closed by a combination of learned knowledge and a standard control strategy (see
[Fu97al for an example).

However, in order to solve more complex and harder problems, the use of knowledge
from a single source is often insufficient. As in the case of human beings, several
lessons are needed and they all must be understood and combined to tackle interesting
problems. Therefore, many of the published approaches to learning in the field of
theorem proving try to combine knowledge from multiple sources. Note that combining
here means the use of knowledge from different sources during a single proof attempt.

36

It does not mean choosing one piece of knowledge to use out of a data base of several
sources (which is covered in Section 3.5) or trying out several pieces one after the other
(see Section 3.7). But also note that the problems discussed in Section 3.7 and this
section are not clearly separable, and that some concepts provide solutions to both
problems.

In general, the following ideas have been introduced to address the problem of com-
bining knowledge from several sources:

e Several recursive calls of the prover.
e Accumulation of knowledge from multiple sources into one large “chunk”.

e Cooperation of provers using different pieces of learned knowledge.

The use of recursive calls of the prover in order to solve subproblems generated by
learned knowledge is a borderline case with respect to our view on the combination of
knowledge from different sources. If there are no dependencies between the subproblems
then we try one piece of knowledge after another and there is no real combination.
But often, as in the case of proof planning, the subproblems are interconnected and
then their solutions cannot always be combined. As already mentioned, [KW96] uses
this approach for combining several learned proofs in order to prove a given problem.
Recursive calls are also the core idea of [DP97] to deal with the lemmata generated by
the partial second-order match.

The accumulation of experiences from several different training problems into one
”chunk”, i.e. one search control heuristic, is a characteristic of the two approaches
described in [DS96b] and also of the approaches of [SF71], [SE90], [Go94], and [Go97].
The two approaches of [DS96b] showed opposing tendencies for a large amount of source
proofs. While learning by pattern memorization can handle really large numbers of
source proofs and continues to improve the performance of the prover with each new
proof added to the data base, experiments with learning by term space mapping showed
that after a certain number of source proofs the behavior degrades. This is one of the
reasons why, although both approaches have some possibilities for combining knowl-
edge directly, [DS96b] also suggests the third alternative, namely the cooperation of
provers using different pieces of learned knowledge.

One cooperation method for theorem provers, already presented in Section 3.7, is the
TEAMWORK method. Cooperation and therefore combination of results is achieved by
the referees by selecting outstanding results that become part of the new start state
for the next working period. Although the TEAMWORK method has proven to be a
good cooperation concept (see [DS96b] and [De+97al), it nevertheless always favors
one particular piece of knowledge, namely the knowledge used by the best expert of a
cycle. Only for this expert all generated facts are used in the new start state. Since
this winner can change from cycle to cycle this is no serious flaw. As a matter of fact,
using the search state of the winners as basis for the new start state helps to avoid the
case that an ill-suited expert directs the search into areas of the search space which are

37

unprofitable and cannot be escaped from even when employing (originally) well-suited
experts.

The TECHS approach (TEams for Cooperative Heterogeneous Search, see [DF99]) has
exactly the opposite features, i.e. all experts are treated exactly the same. Conse-
quently, the usage of very bad experts may result in a computing node that perma-
nently explores bad parts of the search space. Asin TEAMWORK, the TECHS approach
uses experts that employ different search control heuristics. Periodically, these experts
exchange outstanding results (facts) that are selected by referees. But the TECHS
approach uses two kinds of referees, send-referees and receive-referees. While send-
referees serve in essentially the same role as referees in TEAMWORK, receive-referees
make a second selection with regards to the special needs of an expert that receives
facts. Since there is no supervisor all experts are in the same role, i.e. the TECHS ap-
proach is symmetric. The experimental results in [DF99] demonstrate that the TECHS
approach is an interesting cooperation concept (with both advantages and disadvan-
tages compared to TEAMWORK), and allows for the combination of different pieces of
learned knowledge (in the form of control strategies).

It should be noted that there have not been a sufficient number of experiments that
deal with proof problems for which a combination of learned knowledge is necessary.
Only within the cooperation scenarios decribed above does the potential of combining
knowledge become obvious. But the successes of learning provers (see Section 4) suggest
that harder problems will come within the reach of provers. In this tase the combination
problem will become much more important, and we will certainly see additional solution
concepts for it.

3.9 Which Concepts of Similarity are Helpful?

Similarity is a central notion for most forms of learning. Many approaches use similarity
implicitly, melted into the processes of learning and application. It is e.g. well-known
that standard distance measures applied to the representations generated in hidden
layers of multi-layer perceptrons and folding architecture networks reflect a task-specific
similarity measure for the input (see also Section 3.3.3). Analogy-driven methods use
similarity criteria more explicitly. These criteria have to answer the pivotal questions
of analogical reasoning, namely which piece of knowledge or which analogy relation to
use (see Section 3.5) and how to use it (see Section 3.6). Therefore, similarity criteria
for proof problems and for states of theorem provers are needed.

Similarity criteria are commonly formalized by so-called similarity measures. A sim-
ilarity measure essentially expresses a certain aspect of similarity with a numeric (or
Boolean) value. The area of application determines which aspects are useful. As out-
lined above, similarity measures can be utilized both for detecting applicable knowledge
and for applying knowledge. In the following paragraphs, we shall not distinguish be-
tween these two uses because the concepts to be presented are so general that they
may be employed for both uses. Distance measures are complementary to similarity
measures. As both kinds of measures can be transformed into each other easily, the

38

choice of which of the two is more natural to use is usually determined by the details
of the application.

Basically, two classes of similarity measures are used.

Direct: Similarity measures which operate directly on the syntactic structures that
are manipulated by the prover at hand.

Transformational: Similarity measures which first transform the symbolic structures
into a different representation (e.g. feature vectors) so that standard distance
measures can be used.

Most similarity measures that operate on syntactic structures heavily depend on sub-
sumption as main ingredient. In the simplest case, subsumption based on first-order
matching is used. In order to become independent of specific names for symbols, re-
stricted arity-preserving second-order matching, i.e. a renaming of symbols (also called
signature matching) is often used in addition to first-order matching. Flexible re-
enactment ([Fu96], [Fu97b], and [Fu97c|) utilizes this kind of subsumption in order to
identify facts which can be re-enacted. However, even in this simple case we already
can run into severe complexity problems. This is due to the potentially huge number
of renaming possibilities, among which the most suitable one must be found. Finally,
full second-order matching, which not only allows plain renaming, but also changing
the arity of symbols and thus the syntactic structure, can be used.

A similarity measure which works on syntactic structures can also be used to work on
sets of structures. Determining the similarity of sets of syntactic structures is pivotal
in order to assess the similarity of proof problems (which are characterized by a set
of axioms and a goal). In particular, similarity measures based on subsumption can
easily be extended to work with sets of syntactic structures. Given two sets A and B of
axioms so that all axioms in A are subsumed by axioms in B, it is clear that every goal
which can be derived from A can also be derived from B. Hence a test based on this
principle allows for assessing similarity in terms of capability to prove the same or even
more goals. A similar test can be applied to goals: if a goal can be derived from given
axioms, then also all goals which are subsumed by it can be derived from these axioms.
Extensions of similarity measures based on these ideas can be found in [FF97b], [FF97¢],
and [De+97al. Proof reuse as described in [KW94] employs second-order matching to
sets of axioms and goals in order to find suitable “proof shells”.

[DK96] introduces a “domain detection specialist”. Its task basically consists in check-
ing whether all logical consequences of a set A of equational axioms are also logical
consequences of a set B of (equational) axioms. This is the case if the axioms in A are
logical consequences of B. Such a test is in general undecidable. Simply testing A C B
or testing whether for every axiom in A there is an axiom in B subsuming it is not
satisfactory due to possible contractions (see Section 2) made with other axioms in B.
After the use of a signature match, [DK96] solves this dilemma by computing normal
forms of all axioms in A w.r.t. the axioms in B and then checking for syntactic identity
or subsumption by an axiom in B. Thus the “ideal” test for logical consequences can
be approximated to a certain extent with a rather efficient test.

39

The second kind of similarity measure centers on a change of representation to deter-
mine similarity. For this kind of similarity measure, proof structures are represented
by feature vectors. Remember that a feature (see Page 19) encodes a certain syntactic
property with a numeric value. For instance, the number of function symbols occur-
ring in a syntactic structure is one possible feature of a structure. The number of
axioms also is a possible feature of a proof problem. The feature values for a syntactic
structure are represented as a feature vector. A distance measure on feature vectors
— usually the Euclidean distance or a variant of it — is then employed to determine
similarity after the representational change (see Section 3.6). Less distant structures
or proof problems (“nearest neighbors”) are considered more similar. In [Fu97a] such
an approach is used to find similar proof problems.

As already stated in Section 3.3, some of the information contained in the original syn-
tactic structures or proof problems is lost when representing them with feature vectors.
But this can be an advantage: The representational change allows to concentrate on
those parts which are relevant for assessing similarity. New features can be added if
not all relevant parts are covered, or features can be discarded if they represent irrel-
evant information. Moreover, the use of feature vectors and distance measures opens
the door to a well-studied and fruitful area of research, namely instance-based learning
(see [Ah+91], also [K092]).

[SB99] introduces a different transformation-based similarity measure on sets of facts
(more exactly, on unit-equational proof problem specifications, represented as sets of
equations). In this approach, each set of terms or equations is compiled into a recursive
term space map (see Section 3.3.2), and the resulting trees are compared for structural
similarity.

[De+97a] describes an approach based on TEAMWORK (see Section 3.7) combining both
feature representation and matching. It introduces a specialist named PES (Proof
Experience Specialist) which is responsible for detecting applicable knowledge. In
addition to the usual signature matching, PES utilizes a variety of similarity measures
including equality modulo some theory (usually associativity and commutativity) and
homeomorphic embedding (which generalizes subsumption). All these individual or
elementary similarity measures (both for individual syntactic structures and sets of
structures) are combined resulting in one value that can be used to assess the quality
of similarity of sources to a given target (see also Section 3.5).

So, the known approaches to similarity in theorem proving are centered around the use
of similarity within the solutions to the other eight fundamental problems of learning
provers. Nevertheless, research towards similarity measures usable in theorem proving
is interesting even without a connection to learning provers. For example suitable
similarity measures can be used in goal-directed search strategies (see [DF94]).

40

4 Evaluation and Discussion

The goal of including learning capabilities into a system is “the improvement of perfor-
mance in some environment through acquisition of knowledge resulting from experience
in that environment” (according to [La96]). In automated theorem proving the quality
of performance of a prover can be measured rather differently. For example, for fully
automated provers the run-time is usually used as measure while for interactive provers
often the number of user interactions necessary to find a proof is used to indicate the
quality of performance of the prover. But the number of parameters that have to be set
by the user (and the number of possible values for these parameters) is an important
criterion of performance as well. Additionally, a totally different measure of perfor-
mance can often be observed when asking mathematicians, namely understandability
and clarity of the generated proofs, with additional criteria like proof length or quality
of the lemmata generated.

So, although the amount of time (either of a single proof run or spend by the user
in a session with the theorem prover) it takes to solve a given proof problem is in
most cases the main criterion when determining the performance of a prover, there
are other criteria that may be targeted by learning theorem provers. Since the provers
also may use different proof paradigms, different logics, and different calculi, it is
nearly impossible to compare the various solution combinations to our nine fundamental
problems of Section 3 on a general level. Only those solution combinations that can
be applied by a particular prover may be compared and that only for a particular
set of proof problems. For this set of problems and this prover we may then be able
(if the problems are not too different) to determine the solution combination that
achieves the most improvement in performance (according to a concrete definition of
what performance is). However, due to the usually very different nature of other
provers, and due to the fact that at most very few learning approaches have been
integrated into any one prover, a direct comparison of the impact of different learning
approaches is hardly possible, and the results are not usually interesting.

In the following, we will first report on some successes achieved by learning theorem
provers in order to show some of the potential that including learning techniques into
provers has. After that we will elaborate a little more on criteria for evaluating learning
theorem provers and present a spectrum for classifying the uses of the known learning
provers. Finally, despite the difficulty of comparing different solution combinations of
the fundamental problems, we will give some recommendations for building learning
theorem provers.

If we take a look at the performance of existing learning provers reported in litera-
ture, we find that most of them have demonstrated the high potential of learning in
automated deduction. If we look at interactive provers, then ABALONE (see [MW97])
was able to prove several examples fully automatically that its “parent” prover CLAM
could only prove with the help of the user. [KW94] also reports an increase of auto-
matically proven examples by PLAGIATOR versus the version of their prover without
PLAGIATOR.

41

For fully automated provers based on generating calculi, faster run times and an in-
crease in the number of solved problems could be achieved. In [DS96b], 10 percent more
examples of a domain could be proven in half the time than with the best non-learning
strategy. While the improvement in the times used in the proof search is certainly
due to the simple reproduction of input proofs, previously unprovable new examples
could be proven as well. In [De+97a], flexible re-enactment and PES were used in a
bootstrapping process that enabled the system to use easy examples to solve harder
problems, which in turn were used to solve even harder ones, and so on. As a result,
in one domain 16 percent more problems could be solved, in the other 21 percent more
(compared to OTTER in auto mode, which already performs slightly better than the
best non-learning strategy of DisCOUNT). It should be noted that the approaches of
[DS96b] and [De+97a] resulted in some different examples that could be solved with
the different learning or application concepts.

In [Go097], heuristic evaluation functions for solving word problems in group theory
were learned for the theorem prover SETHEO. Of course word problems in group
theory are trivial for systems using completion techniques. However, SETHEO is a
prover for pure first-order logic, without special treatment for the equality relation.
A standard axiomatization of group theory with axiomatic equality was used for the
experiment. It is known that under these conditions word problems in group theory
can be extremely hard to prove. The experimental results obtained are very good.
The system was trained on simple problems that could be solved by the conventional
prover, yielding an heuristic evaluation function for proof states. Controlled by this
heuristic, the system was able to solve nearly all of the tested new problems (all of
which had been beyond reach of the conventional SETHEO).

As stated at the beginning of this section, the goal when building a learning prover
(or including learning into an existing one) is an improvement in performance when
compared to not-learning variants of the prover. Depending on the definition of per-
formance, one also has to define criteria for evaluating success. In the area of machine
learning such evaluations traditionally consist of two kinds of experiments, namely ex-
periments with the examples one has learned from (measuring the recall capability of
the particular learning concept) and experiments with new examples (measuring the
transfer capabilities of the concept). Naturally, all the examples belong to the class of
problems one is interested in (or one wants to improve upon).

Although in some applications of automated deduction it may be already useful to
improve on the performance of a prover with respect to already solved proof problems
(as in the CASC scenario, see later), in most cases the interest is focused on the transfer
capabilities of the learning concept. If one is, for example, interested in the performance
of fully automated provers with respect to run-time, then improvements with respect to
already solved proof problems can be best achieved by simply memorizing the proofs of
these problems and applying an efficient method for detecting applicable source proofs
(see also Section 3.5). In fact, all the learning approaches described in this paper
lead to an improvement with respect to their training problems. Unfortunately, it is
much more difficult to achieve improvements with respect to new, so far unsolved proof
problems.

42

It should be noted that it is not sufficient to demonstrate success of learning on a single
new test problem. Improvement on a single test problem may e.g. indicate that very
specific knowledge has been learned that may even decrease performance of the system
with respect to other problems of the respective class considerably (this is known as
over-fitting). Unfortunately, in literature it is typical for systems using variants of
memorization (see Sections 3.3.1 and 3.4.1) that knowledge bases consisting only of
very few source problems are generated and only very few test problems are used
for evaluation. Consequently, it is often impossible to get an impression of the costs
implied by search in big knowledge bases and by the redundancy caused by having
many potentially applicable source problems (see also Section 3.6). We claim that the
performance of learning theorem provers has to be tested w.r.t. sets of problems which
are as “representative” as possible for the respective problem class.

An example of the problems, like over-fitting, occurring when defining the performance
only on the training examples surfaced in the 1998 CADE ATP System competition
(CASC-15, http://www.cs. jcu.edu.au/ " tptp/CASC-15/). We know from personal
communications with several of the participants of CASC-15 that they used the set of
so called “eligible” problems for tuning their systems °. Tuning was realized by either
hand-crafted or automated methods which analyze proof problems and determine sys-
tem parameters and search strategies. These tuning methods are very closely related
to learning as described in [Fu97a]. Some of them even involve feature vectors for de-
termining similarity of proof problems (see also Section 3.9). The actual competition
and evaluation of the systems was done by selecting test problems from this previ-
ously determined set of eligible problems. So in the terminology of learning, the final
evaluation actually was done on a subset of the training problems. In personal commu-
nications we have been told about strong over-fitting effects. The systems tuned w.r.t.
the eligible problems often turned out to be weaker than the respective untuned base
provers when they were evaluated on the whole TPTP problem library (see [Su+94]).

If we concentrate on run-time as the measure of performance then obviously one is
interested in fast but not specialized (i.e. flexible) provers. But unfortunately, there
is a certain trade-off between efficiency w.r.t a given problem class and generality. A
prover that solves only one problem by immediately returning a memorized proof is
extremely efficient for this problem. It is, however, not useful for other problems. On
the other hand, a prover with a high degree of generality, cannot be as efficient as
the hypothetical one-problem-only prover since it is in general impossible to memorize
proofs for an infinite number of problems. Note that specialization is not “bad” per
se. If only problems in one certain area of interest are to be solved then specialization
on this specific class of problems is sufficient for a user.

We can place the known learning provers into a spectrum ranging from very specialized
to more flexible provers. Naturally, on one end of this spectrum we have the hypothet-
ical one-problem-only prover that has memorized one problem and the best solution to
it. The other end is a general purpose prover using its standard (usually non-learning)

10This is not against the competition rules and shows again, that learning by developers and users
of theorem provers is already very important. Note however that it is planned not to make the set of
eligible problems known in future competitions.

43

very specialized very flexible

® L
| I N |
I]]
one-problem
only prover Me95 standard
Mw9a7 F
e DS96h u95 Fug7a Strategy
of prover
Fug6
DK96
Fuorb %%
DFF97 Fuge
KW94-97

Go94
DP97

Figure 1: Spectrum of known learning provers

control strategy that is intended to have the least (in most cases no) specialization and
some basic efficiency. Note that the spectrum corresponds to the degree of generality
of learned knowledge introduced in Section 3.2. The part between the two extremes
represents provers which have specialized on specific domains or problem classes.

In Figure 1 we (qualitatively) depict this spectrum for the known learning provers. The
positions of individual approaches are determined by the way in which the approaches
are applied in the respective papers. This means that we actually show the positions of
the respective provers after learning. We do not depict and we do not analyze in detail
the potential of individual learning provers for more or less specialization. However, we
would like to give the user some ideas for such considerations. The learning method (see
Section 3.4) and the representation scheme (see Section 3.3) are the core of a learning
prover. They can severely limit the degree of specialization that is possible. If e.g. the
representation scheme does not allow to uniquely represent training examples, exact
memorization of proofs is impossible and only more general knowledge can be learned.
On the other hand, if a representation scheme with a high representational power is
used, the learning prover can in principle cover the whole spectrum. The position for
a trained prover then only depends on the selection of training problems. If they are
selected from a very specific problem class, the prover will be very specialized while it
will be quite general if they are selected from a wider class. Some of the methods for
detecting applicable knowledge (see Section 3.5), for handling misleading knowledge
(see Section 3.7), and for combining different sources of (maybe very special) knowledge
(see Section 3.8) are so general that they can be used for all learning approaches
in order to increase the range of specialization. Additional organization of learned
knowledge or the cooperation/competition approaches for example allow a prover to
have less specialization (for the whole system, not for individual pieces of knowledge
or for components of the prover) while still being quite effective as demonstrated in
[De+97al.

After this rather abstract classification we will look at the different proof philosophies
and give recommendations which learning approaches can be used for provers employing

44

these philosophies.

In generating provers, the use of similarity measures (see Section 3.9) for the identi-
fication of analogical situations on various levels of abstraction (specifications, goals,
individual facts) both for the selection of suitable training (source) problems and in
derivational analogy (see Section 3.5) is particularly promising. In general, all tech-
niques which compute (even approximate) evaluations for generated facts or potential
inferences can be used. On the other hand, transformational analogy (see Section 3.5)
is rather difficult to integrate, as the cost of the test for the applicability of a given
piece of knowledge ranges from very expensive to undecidable.

For analytical provers, learning on the calculus level (see Section 3.2) such as lemma
mechanisms or macro- and meta-inference rules and proof schemata applied via trans-
formational analogy are very suitable, since they introduce a bottom-up element into
the top-down search. Thus the effective depth of proofs can be reduced and longer,
more complex proofs can be found. As this is achieved at the cost of increasing the
branching factor during the search, careful supervision is necessary to find the optimal
balance. Since backward chaining normally means a goal-directed search, there are
also more possibilities for explicitly applying planning methods than in case of gen-
erating calculi. Thus derivational analogy is also very suitable for analytical provers.
Since analytical provers work by enumerating proof attempts instead of enumerating
consequences of axioms, the search state consists of a proof structure and evaluation
functions for whole proof structures or parts of them can be learned. Such evaluation
functions have a more global view than evaluation functions for facts in generating
calculi. It is for example possible to specifically evaluate combinations of proof steps.
Numeric and hybrid learning algorithms (see Section 3.4) seem particularly suitable
for learning such evaluation functions.

For interactive provers, the goal of learning is in most cases to reduce the interaction
with the user, as already stated. Typical application fields such as software verification
produce several very similar proof problems. As an example, consider the case that a
verified program is slightly changed. Most of the proof obligations remain the same and
are likely to have the same or very similar proofs. The re-enactment of user interactions
by derivational analogy provides a good basis for learning in interactive provers. As in
the case of other provers, similarity criteria have to reflect the inference rules used, or
better those inferences that are controlled by the user.

Interactive provers that employ proof planning offer an excellent environment for the
combination of different kinds of learned knowledge and for tactics that employ deriva-
tional analogy. The detection of applicable knowledge and of misleading knowledge
can be easily integrated into such an environment. The proof trees that are used by
such planning provers can offer additional information which on the other side allows
for more possibilities for abstraction.

Finally, we briefly discuss preconditions provers have to fulfill in order to make learning
applicable. Of course, an approach as described in [Fu97a] (selection of one of the
prover’s standard strategies based on learning) can be applied to all provers. For
a lot of learning approaches, however, proofs are the basic form of experience. For

45

applying them the respective prover has to be able to produce proofs. Simply producing
“success” or “failure” as output is not sufficient. Consider further that for a lot of
learning approaches negative experience is needed. Producing negative experience is
sometimes tricky, especially if provers throw away parts of their results during the
search. So far we discussed aspects which are important for learning. There are also
aspects which are important when it comes to the application of learned knowledge.
For derivational analogy and heuristic evaluation functions it is e.g. necessary that the
prover offers easy access to proof states during search.

While learning theorem provers may conceal weaknesses in the calculus, control, and
implementation of a prover, it must be mentioned that a strong base prover is always
preferable. Learning can only improve on the abilities of a prover, it cannot generate
abilities out of thin air. The more proof problems a prover can solve without learning,
the higher is the probability that one (or several) of these problems are appropriate
to help solving a given new proof problem. Moreover, longer, more difficult proof
problems are, in our experience, more likely to reveal important concepts than trivial
ones.

5 Future Developments

Learning theorem provers offer substantial improvements compared to today’s state-
of-the-art conventional provers, with respect to several measures of performance. In
particular, improvements have been reported with respect to the time needed to prove
a given problem and the grade of automation, i.e. the amount of user interaction and
the number of attempts necessary until a problem is solved. For application areas with
problems in various degrees of difficulty, learning can allow a prover to automatically
adapt, resulting in more difficult problems solved, as demonstrated in [De+497a] or
[Go97].

In order to enhance a prover by adding learning capabilities, a number of problems
(given by our nine fundamental questions) have to be solved, some of which are ob-
viously interconnected. Although for each type of prover there is already at least one
first solution to each of these problems, much more work has to be done to find addi-
tional (maybe better) solutions and to determine which combinations of solutions offer
the highest gains for a certain type of prover and certain types and classes of proof
problems.

While the basic techniques for enhancing conventional control strategies by learned
knowledge are quite well known, similarity measures for different calculi used for se-
lecting the right pieces of knowledge require both new ideas and more theoretical work.
The levels and aspects on which proof problems are similar cannot only help a certain
prover, but may also help to suggest what type of prover with what proof philosophy
should be chosen for a given proof attempt in the first place. So similarity measures
may also offer insight into the classes of problems a particular prover or a particular
calculus can solve (in practice).

46

Most of the presented learning provers are rather experimental. Therefore it is an
important goal to include the necessary concepts into production-quality provers and
then test them on real applications, as for example verification or mathematics. Since
the (basic) training of learning provers often can be separated from the application of
learned knowledge, the performance of learning provers adapted to an application may
be able to reach the level that is required by the users for many of these applications.

Finally, with the development of more concepts and solutions, appropriate criteria and
measures are needed to compare learning theorem provers (see also Section 4). The
TPTP library [Su+94] already includes a few domains that provide a wide range of
examples suitable for learning, however, more such domains are needed. In particu-
lar, there is no standard benchmark set for provers using other logics than first order
(clausal) logic or unit equality logic. As stated above, the success of learning provers
cannot be adequately measured on single examples, but only on whole domains. Impor-
tant criteria for measuring the success of a learning approach then have to be coverage
of such a domain (how many of the examples can be proven), flexibility (how many
different domains are well covered), degrees of automation and other criteria in addi-
tion to the criteria already used, for example, in CADE’s theorem prover competition
(see [SS97a] and [SS97Db]).

References

[Ah491] Aha, D.W.; Kibler, D.; Albert, M.K. (1991). Instance-Based Learning Algo-
rithms. Machine Learning 6, 37-66.

[Ba88] Bachmair, L. (1988). Proof by Consistency in Equational Theories. Proc. 3rd
LICS, LNAIL pp. 228-233.

[Ba+89] Bachmair, L.; Derschowitz, N.; Plaisted, D.A. (1989). Completion Without
Failure. Coll. on the Resolution of Equations in Algebraic=20 Structures, Austin,
1987.

[BG94] Bachmair, L.; Ganzinger, H. (1994). Rewrite-based equational theorem proving
with selection and simplification. Journal of Logic and Computation 4(3), 217-247.

[Br+88] Brock, B.; Cooper, S.; Pierce, W. (1988). Analogical Reasoning and Proof
Discovery. Proc. CADE-9, Argonne, LNCS 310, pp. 454—468.

[Bu88] Bundy, A. (1988). The use of explicit plans to guide inductive proofs. Proc.
CADE-9, Argonne, LNCS 310, pp. 111-120.

[Ca86] Carbonell, J. G. (1986). Derivational Analogy: A Theory of Reconstructive
Problem Solving and Expertise Acquisition. Machine Learning: An Artificial Intel-
ligence Approach, Morgan Kaufmann.

[CL73] Chang, C.; Lee, R.C. (1973). Symbolic Logic and Mechanical Theorem Proving.
Academic Press.

47

[CV88] Carbonell, J. G.; Veloso, M. (1988). Integrating Derivational Analogy into
a General Problem Solving Architecture. Proc. of the 1988 DARPA Workshop on
Case-Based Reasoning, Clearwater Beach.

[Cy89] Cybenko, G. (1989). Approximation by Superpositions of a Sigmoidal Function.
Mathematics of Control, Signals, and Systems 2, 303-314.

[Da+94] Dahn, B.I.; Gehne, J.; Honigmann, T.; Walther, L.; Wolf, A. (1994). Inte-
grating Logical Functions with ILF. Internal report, Institut fiir Reine Mathematik,
Humbold-University, Berlin.

[De90] Dershowitz, N. (1990). A maximal-Literal Unit Strategy for Horn Clauses. Proc.
2nd CTRS, Montreal, LNCS 516, pp. 14-25.

[De95] Denzinger, J. (1995). Knowledge-Based Distributed Search Using Teamwork.
Proc. ICMAS-95, San Francisco, AAAI-Press, pp. 81-88.

[De+97a] Denzinger, J.; Fuchs, M.; Fuchs, Marc (1997a). High Performance ATP Sys-
tems by Combining Several AI Methods. Proc. IJCAI-97, Nagoya, Morgan Kauf-
mann, pp. 102-107.

[De+97b] Denzinger, J.; Kronenburg, M.; Schulz, S. (1997b). DISCOUNT. A Dis-
tributed and Learning Equational Prover. Journal of Automated Reasoning 18(2),
189-198.

[DF94] Denzinger, J.; Fuchs, M. (1994). Goal oriented equational theorem proving
using team work. Proc. KI-94, Saarbriicken, LNAI 861, pp. 343-354.

[DF96] Denzinger, J.; Fuchs, D. (1996). Referees for Teamwork. Proc. FLAIRS 96,
Key West, ISBN 0-9620-1738-8, pp. 454—-458.

[DF99] Denzinger, J.; Fuchs, D. (1999). Cooperation of Heterogeneous Provers. Proc.
IJCAI-99, Stockholm, Morgan Kaufmann, to appear.

[DK96] Denzinger, J.; Kronenburg, M. (1996). Planning for Distributed Theorem Prov-
ing: The Teamwork Approach. Proc. KI-96, Dresden, LNAI 1137, pp. 43-56.

[DM86] DeJong, G.; Mooney, R. (1986). Explanation-Based Learning: An Alternative
View. Machine Learning 1, 145-176.

[DP97] Defourneaux, G.; Peltier, N. (1997). Analogy and Abduction in Automated
Deduction. Proc. IJCAI-97, Nagoya, Morgan Kaufmann, pp. 216-221.

[Dr98a] Draeger, J. (1998). Acquisition of Useful Lemma Knowledge in Automated
Reasoning. Proc. AIMSA-98, LNCS 1480, pp. 230-2309.

[Dr98b] Draeger, J. (1998). Modularisierte Suche in Theorembeweisern Ph.D. Thesis,
Technische Universitat Miinchen, Fakultat fiir Informatik.

48

[DS96a] Denzinger, J.; Schulz, S. (1996a). Recording and Analyzing Knowledge-Based
Distributed Deduction Processes. Journal of Symbolic Computation 21, 523-541.

[DS96b] Denzinger, J.; Schulz, S. (1996b). Learning Domain Knowledge to Improve
Theorem Proving. Proc. CADE-13, New Brunswick, LNAI 1104, pp. 62-76.

[DWO96] Dahn, B.I.; Wolf, A. (1996). Natural Language Presentation and Combination
of Automatically Generated Proofs. Proc. FroCoS’96, Miinchen, pp. 175-192.

[Et93] Etzioni, O. (1993). A Structural Theory of Explanation-Based Learning. Arti-
ficial Intelligence 60(1), 93-139.

[FF97a] Fuchs, D.; Fuchs, Marc (1997a). Self-Modifying Theorem Provers. Proc.
FLAIRS-97, Daytona Beach, ISBN 0-9620-1739-6, pp. 176-180.

[FF97b] Fuchs, M.; Fuchs, Marc (1997b). Case-Based Reasoning for Automated De-
duction. Proc. FLAIRS-97, Daytona Beach, ISBN 0-9620-1739-6, pp. 6-10.

[FF97c] Fuchs, M.; Fuchs, Marc (1997c). Applying Case-based Reasoning to Auto-
mated Deduction. Proc. 2nd International Conference on Case-based Reasoning
(ICCBR-97), Providence, LNAL

[Fu95] Fuchs, M. (1995). Learning Proof Heuristics by Adapting Parameters. Proc.
12th Machine Learning, San Francisco, Morgan Kaufmann, pp. 235-243.

[Fu96] Fuchs, M. (1996). Experiments in the Heuristic Use of Past Proof Experience.
Proc. CADE-13, New Brunswick, LNATI 1104, pp. 523-537.

[Fu97a] Fuchs, M. (1997a). Automatic Selection of Search-Guiding Heuristics. Proc.
FLAIRS-97, Daytona Beach, ISBN 0-9620-1739-6, pp. 1-5.

[Fu97b| Fuchs, M. (1997b). Flexible Re-Enactment of Proofs. Proc. EPIA-97, Coimbra,
LNAI 1323, pp. 13-24.

[Fu97c|] Fuchs, M. (1997c). Learning Search Heuristics for Automated Deduction.
Ph.D. Thesis, University of Kaiserslautern, Verlag Dr. Kova¢, ISBN 3-86064-623-
0.

[Fu97d] Fuchs, Marc (1997). Similarity-Based Lemma Generation for Model Elimina-
tion. Proc. FTP-97 Workshop, RISC-Linz Report Series No. 97-50, pp. 63-67.

[GK96] Goller, C.; Kiichler, A. (1996). Learning Task-dependent Distributed Repre-
sentations by Backpropagation Through Structure. Proc. ICNN-96, vol. 1, IEEE,
pp- 347-352.

[GN97] Gerberding, S.; Noltemeier, A. (1997). Incremental Proof Planning by Meta-
Rules. Proc. FLAIRS-97, Daytona Beach, ISBN 0-9620-1739-6, pp. 171-175.

[Go69] Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization & Machine
Learning. Addison Wesley.

49

[Go94] Goller, C. (1994). A Connectionist Control Component for the Theorem Prover
SETHEQ. Proc. of the ECAI'94 Workshop: Combining Symbolic and Connectionist
Processing.

[Go97] Goller, C. (1997). A Connectionist Approach for Learning Search-Control
Heuristics for Automated Deduction Systems. Ph.D. Thesis, Technische Universitit
Miinchen, Fakultat fiir Informatik.

[Ha96] Hammer, B. (1996). Universal Approximation of Mappings on Structured Ob-
jects using the Folding Architecture. Osnabriicker Schriften zur Mathematik, Reihe
P, Heft 183, Fachbereich Mathematik/Informatik, Universitdt Osnabriick.

[Hi+97] Hillenbrand, T.; Buch, A.; Vogt, R.; Lochner, B. (1997). WALDMEISTER.
High Performance Equational Deduction. Journal of Automated Reasoning 18(2),
pp- 265-270.

[Hi+99] Hillenbrand, T.; Jaeger, A.; Lochner, B. (1999). System Abstract: Waldmeis-
ter — Improvements in Performance and Ease of Use. Proc. of the 16th CADE, Trento,
LNAI 1632, pp. 232-236.

[Ho+89] Hornik, K. and Stinchcombe, M. and White, H. (1989). Multilayer Feedfor-
ward Networks are Universal Approximators. Neural Networks 2, pp. 359-366.

[HS97] Hammer, B.; Sperschneider, V. (1997). Neural Networks can approximate Map-
pings on Structured Objects. Proc. 2nd International Conference on Computational
Intelligence and Neuroscience, VOL. 2, pp. 211-214

[Hu96] Hutter, D. (1996). Using Rippling for Equational Reasoning. Proc. KI-96, Dres-
den, LNAT 1137, pp. 121-134.

[Hu+94] Huang, X.; Kerber, M.; Richts, J.; Sehn, A. (1994). Planning mathematical
proofs with methods. Journal of Information Processing and Cybernetics, 30(5-6),
pp- 277-291.

[KG96] Kiichler, A.; Goller, C. (1996). Inductive Learning in Symbolic Domains Using
Structure-Driven Recurrent Neural Networks. Proc. KI-96, Dresden, LNAI 1137,
pp- 183-198.

[K171] Kling, R.E. (1971). A paradigm for reasoning by analogy. Artificial Intelligence
2 147-178.

[K0o92] Kolodner, J.L. (1992). An Introduction to Case-Based Reasoning. Artificial
Intelligence Review 6, 3—34.

[Kii98] Kiichler, A. (1998). On the Correspondence between Neural Folding Architec-
tures and Tree Automata. Technical Report, Computer Science, University of Ulm.

[KV96] Kapur, D.; Vandevoorde, M.T. (1996). Distributed Larch Prover (DLP): An
Experiment in Parallelizing a Rewrite-Rule Based Prover. Proc. RTA-96, New
Brunswick, LNCS 1103, pp. 420-423.

20

[KW94] Kolbe, T.; Walther, C. (1994). Reusing Proofs. Proc. ECAI '94, Amsterdam,
pp- 80-84.

[KW95] Kolbe, T.; Walther, C. (1995). Proof Management and Retrieval. Proc. IJCAI
’95 Workshop on Formal Approaches to the Reuse of Plans, Proofs, and Programs,
pp- 16-20.

[KW96] Kolbe, T.; Walther, C. (1996). Termination of Theorem Proving by Reuse.
Proc. CADE-13, New Brunswick, LNAT 1104, pp. 106-120.

[La96] Langley, P. (1996). Elements of Machine Learning. Morgan Kaufmann.

[Le+92] Letz, R.; Schumann, J.; Bayerl, S.; Bibel, W. (1992). SETHEO: A High-
Performance Theorem Prover. Journal of Automated Reasoning 1(8), 183-212.

[L169] Lloyd, J.W. (1984). Foundations of Logic Programming. Symbolic Computation,
Springer.

[Lo69] Loveland, D.W. (1969). A Simplified Format for the Model Elimination Proce-
dure. JACM 16(3), 233-248.

[Mc94] McCune, W.W. (1994). OTTER 3.0 Reference manual and Guide. Tech. rep.
ANL-94/6, Argonne National Laboratory.

[Mc97] McCune, W.W. (1997). Solution of the Robbins Problem. Journal of Automated
Reasoning 19(3), 263-276.

[Me95] Melis, E. (1995). A model of analogy-driven proof-plan construction. Proc.
14th IJCAI, Montreal, pp. 182-1809.

[Mi90] Minton, S. (1990). Quantitative Results Concerning the Utility of Explanation-
Based Learning. Artificial Intelligence 42, 363-391.

[Mi+86] Mitchell, T. M.; Keller, R. M.; Kedar-Cabellis, T. (1986). Explanation-Based
Generalization: A Unifying View. Machine Learning 1, 47-80.

[MW97] Melis, E.; Whittle, J. (1997). Analogy as a Control Strategy in Theorem
Proving. Proc. FLAIRS-97, Daytona Beach, ISBN 0-9620-1739-6, pp. 367-371.

[MR94] Muggleton, S.; Raedt, L. (1994). Inductive Logic Programming: Theory and
Methods. Journal of Logic Programming 19,20, 629-679.

[PN90] Paulson, L.C.; Nipkow, T. (1990). Isabelle tutorial and user’s manual. Tech.
Report 189, University of Cambridge Computer Laboratory.

[Re+97] Reif, W.; Schellhorn, G.; Stenzel, K. (1997). Proving System Correctness with
KIV 3.0. Proc. CADE-14, Townsville, LNAT 1249, pp. 69-72.

[Ro65] Robinson, J.A. (1965). A Machine Oriented Logic based on the Resolution
Principle. JACM 12(1), 23-41.

o1

[Ru+86] Rumelhart, D. E.; McClelland, J. L.; Hinton, G. E. (1986). Parallel Dis-
tributed Processing: Explorations in the Microstructure of Cognition. MIT Press,
Cambridge/London.

[Sc97] Schmitt, T. (1997). Evaluation of the Neural Folding Architecture for Inductive
Learning Tasks concerning Logical Terms and Chemical Structures. Masters-thesis,
Technical University of Munich, Computer Science.

[SB99] Schulz, S.; Brandt, F. (1999). Using Term Space Maps to Capture Search Con-
trol Knowledge in Equational Theorem Proving. Proc. FLAIRS-99, Orlando, AAAI
Press, pp. 244-248.

[Sc+97] Schulz, S.; Kiichler, A.; Goller, C. (1997). Some Experiments on the Applica-
bility of Folding Architecture Networks to Guide Theorem Proving. Proc. FLAIRS-
97, Daytona Beach, ISBN 0-9620-1739-6, pp. 377-381.

SD93| Sonntag, 1.; Denzinger, J. (1993). Extending automated theorem proving by
g
planning. SEKI-Report SR-93-02, University of Kaiserslautern.

[SE90] Suttner, C.; Ertel, W. (1990). Automatic Acquisition of Search Guiding Heuris-
tics. Proc. CADE-10, Kaiserslautern, LNAT 449, pp. 470-484.

[SF71] Slagle, J.R.; Farrell, C.D. (1971). Experiments in automatic learning for a mul-
tipurpose heuristic program. Communications of the ACM 14(2), 91-99.

[SGI98] Schmitt, T.; Goller, C. (1998). Relating Chemical Structure to Activity with
the Structure Processing Neural Folding Architecture. Proc. EANN 98, Gibraltar,
June, 1998.

[Si86] Silver, B. (1986). Meta-Level Inference. Studies in Computer Science and Arti-
ficial Intelligence, Elsevier Science Publishers B.V.

[Sm68] Smullyan, R.M. (1968). First Order Logic. Springer.

[SS97a] Sutcliffe, G.; Suttner, C.B. (1997a). Special Issue: The CADE-13 ATP System
Competition. JAR 18(2).

[SS97b] Sutcliffe, G.; Suttner, C.B. (1997b). The CADE-14 ATP System Competition.
Technical Report 98/01, Department of Computer Science, James Cook University.

[Su+94] Sutcliffe, G.; Suttner, C.B.; Yemenis, T. (1994). The TPTP Problem Library.
Proc. CADE-12, Nancy, LNAT 814, pp. 252-266.

Va95| Vapnik, V.N. (1995). The Nature of Statistical Learning Theory. Springer, New
g
York.

[Ve96] Veroff, R. (1996). Using Hints to Increase the Effectiveness of an Automated
Reasoning Program: Case Studies. JAR 16:, 223-239.

52

[We74] Werbos, P. J. (1974). Beyond Regression: New Tools for Prediction and Anal-
ysis in the Behavioral Science. PhD-thesis, Harvard University.

[W096] Wos, L. (1996). The Automation of Reasoning. Academic Press.

93

